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A B S T R A C T   

Background: Patients at high risk of severe forms of COVID-19 frequently suffer from chronic diseases, but other 
risk factors may also play a role. Environmental stressors, such as endocrine disrupting chemicals (EDCs), can 
contribute to certain chronic diseases and might aggravate the course of COVID-19. 
Objectives: To explore putative links between EDCs and COVID-19 severity, an integrative systems biology 
approach was constructed and applied. 
Methods: As a first step, relevant data sets were compiled from major data sources. Biological associations of 
major EDCs to proteins were extracted from the CompTox database. Associations between proteins and diseases 
known as important COVID-19 comorbidities were obtained from the GeneCards and DisGeNET databases. Based 
on these data, we developed a tripartite network (EDCs-proteins-diseases) and used it to identify proteins 
overlapping between the EDCs and the diseases. Signaling pathways for common proteins were then investigated 
by over-representation analysis. 
Results: We found several statistically significant pathways that may be dysregulated by EDCs and that may also 
be involved in COVID-19 severity. The Th17 and the AGE/RAGE signaling pathways were particularly promising. 
Conclusions: Pathways were identified as possible targets of EDCs and as contributors to COVID-19 severity, 
thereby highlighting possible links between exposure to environmental chemicals and disease development. This 
study also documents the application of computational systems biology methods as a relevant approach to in-
crease the understanding of molecular mechanisms linking EDCs and human diseases, thereby contributing to 
toxicology prediction.   

1. Introduction 

The COVID-19 pandemic started in the fall of 2019 and spread to a 
large part of the world during the winter and spring of 2020. By late 
September 2020, it had led to more than a million deaths, of which one- 
fifth in the US and somewhat fewer in the EU (https://coronavirus.jhu. 
edu/map.html, https://covid19.who.int/). Despite considerable 
research activities, there are still many unknowns concerning this in-
fectious disease, especially with regard to the substantial variability of 
the disease severity. Following an initial infectious phase, a “cytokine 
storm”, leading to pneumonia is observed in severe cases which may 
require intensive care. It is still unclear why infections lead to severe 
cases in some patients and not in others, but both endogenous and 
exogenous factors can likely influence the outcome of the disease. 

In addition to older age and male sex, several comorbidities are 
associated with severe COVID-19 and increased mortality risk. Disorders 
such as cardiovascular disease, type II diabetes (T2D), obesity, chronic 
respiratory disease or hypertension are strongly linked to severe COVID- 
19 cases (Petrilli et al., 2020; Zhou et al., 2020; Stefan et al., 2020). As 
has recently been proposed, underlying metabolic and endocrine dys-
functions may be mechanistically linked to the exacerbation of the 
coronavirus infection (Bornstein et al., 2020), and these observations 
may inspire new insight into the pathogenesis of this disease, including 
biological interpretation of the mechanisms involved. Environmental 
stressors have already been suggested to contribute to the severity of the 
disease (Bashir et al., 2020; Fattorini and Regoli, 2020; Zhu et al., 2020), 
but little mechanistic support for this association is available. A relevant 
approach would be to compare the biological pathways triggered by 
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environmental stressors with those involved in the COVID-19 severity. If 
similar pathways are found, this would increase the likelihood that such 
stressors may contribute to critical stages of this disease. 

Given the suspected hormonal mode of vulnerability (Drucker, 2020) 
endocrine disrupting chemicals (EDCs) could represent important trig-
gers of aggravated infection, e.g., in the form of phthalates, bisphenols, 
organochlorine pesticides, and perfluorinated alkane substances 
(PFASs) (Trasande et al., 2016; Vandenberg et al., 2016). Exposure to 
these substances may affect the immune defense, thus potentially 
increasing the susceptibility to develop COVID-19 (Tsatsakis et al., 
2020), as supported by experimental studies (Cipelli et al., 2014; Cou-
leau et al., 2015). For example, epidemiological evidence on children 
exposed to PFASs show decreased immune responses to routine vaccines 
(Grandjean et al., 2012) and a greater risk of developing infectious 
disease (Dalsager et al., 2016; Granum et al., 2013). 

As promising tools to gain better insight into the possible risk factors 
and mechanisms, toxicological and chemical data sources have 
expanded substantially, thereby enabling network science and compu-
tational systems biology methods to become feasible (Audouze et al., 
2013, 2018; Taboureau and Audouze, 2017; Vermeulen et al., 2020; Wu 
et al., 2020). We have therefore conducted an integrative systems 
biology exploration to identify overlapping proteins that are both dys-
regulated by EDCs and involved in comorbidities associated with 
aggravated COVID-19. Based on this tripartite network, integrating 
protein-EDC associations and protein-disease annotations, we then 
performed biological enrichments of pathways to detect the most 
plausible relationships between EDC exposure and COVID-19 severity. 

2. Material and methods 

We employed a computational systems biology approach to explore 
putative linkages between EDCs and COVID-19 as presented in Fig. 1. 
First, a tripartite network was created based on known associations 
between proteins and either COVID-19 comorbidities or EDCs, as 
compiled from existing databases (CompTox, DisGeNET, GeneCards) 
(A). Then, biological enrichment was performed with the jointly 

identified proteins (i.e., those retrieved in both association studies) (B) 
by over-representation analysis (ORA) to identify the pathways that 
were the highly linked to both the diseases and the EDCs (C). As a final 
step, the biological pathways were explored with available knowledge 
regarding COVID-19 mechanisms (from the literature and the AOP-Wiki 
database), thereby allowing consideration of hypothetical linkages be-
tween EDCs and COVID-19 (D). 

2.1. Endocrine-disrupting chemical dataset 

A list of commonly used substances known or suspected to act as 
EDCs was established, based on knowledge from three data sources: the 
endocrine disruptor assessment list from ECHA (https://echa.europa. 
eu/fr/ed-assessment, as of April 24, 2020), the list from NIEHS (https 
://www.niehs.nih.gov/health/topics/agents/endocrine/index.cfm as 
of April 28, 2020), and the TEDX list (https://endocrinedisruption. 
org/interactive-tools/tedx-list-of-potential-endocrine-disruptors 
/search-the-tedx-list, as of April 24, 2020). 

To explore as much as possible the chemical diversities, 34 EDCs 
chosen for this study were selected to represent different chemical 
classes (Table 1). The CAS numbers were used for data integration. The 
substances selected are known to activate different receptors, and their 
various impacts have been shown in epidemiological studies. Still, these 
EDCs do not necessarily represent the most abundant chemicals in 
human matrices, and bioaccumulation and biotransformation may affect 
the degree of human exposures and their effects. 

2.2. Disease dataset 

Comorbidities known to be associated with obesity or otherwise 
leading to severe COVID-19 were extracted from a recent study (Stefan 
et al., 2020), and resulted in a total of 13 disorders for exploration in the 
integrative systems toxicology (Table 2). 

Fig. 1. Overview of the integrative systems 
toxicology approach. A: Human proteins known to 
be dysregulated by endocrine-disrupting chemicals 
(EDCs) were extracted from the CompTox database; 
human proteins linked to obesity or to comorbid-
ities or metabolic dysfunction known to be associ-
ated with obesity were compiled using DisGeNET 
and GeneCards. These compiled data were used to 
develop a tripartite network. B: A set of proteins 
was identified that was common to both association 
studies (proteins targeted by the EDCs and also 
involved in comorbidities). C: Biological enrichment 
was performed for pathways for each of the four 
databases, by over-representation analysis (ORA) to 
identify potential mechanisms of action related to 
these proteins, where the biological pathways were 
ranked by their statistical significance. D: The most 
relevant of the potential pathways were compared 
to known COVID-19 dysregulated pathways from 
the literature and the AOP-Wiki database.   
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Table 1 
List of the 34 major substances known or suspected to be endocrine-disrupting chemicals.  

CAS Chemical name Abbreviation Chemical structure 
35065-27-1 2,2′,4,4′ ,5,5′-hexachlorobiphenyl PCB 153 

1746-01-6 

2,3,7,8- tetrachlorodibenzodioxin TCDD 
1912-24-9 atrazine - 

131-56-6 
benzophenone-1 - 

117-81-7 

bis (2-ethylhexyl)phthalate DEHP 

620-92-8 

bisphenol F BPF 

80-05-7 

bisphenol A BPA 

80-09-1 

bisphenol S BPS 

94-26-8 

butyl-paraben BUPA 

57-74-9 

chlordane – 

2921-88-2 

chlorpyrifos – 

210880-92-5 

clothianidin – 

52315-07-8 

cypermethrin – 

486-66-8 

daidzein – (continued on next page) 
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Table 1 (continued ) 
CAS Chemical name Abbreviation Chemical structure 

84-74-2 
dibutyl phthalate DBP 

72-55-9 

Dichlorodiphenyldichloroethylene DDE 

50-29-3 

dichlorodiphenyltrichloroethane DDT 

446-72-0 

genistein – 

3194-55-6 

hexabromocyclododecane HBCD 

118-74-1 

hexachlorobenzene HCB 

138261-41-3 

imidacloprid – 

625-45-6 

methoxyacetic acid MAA 
99-76-3 

methyl-paraben MEPA 

68412-53-3 

nonylphenol ethoxylate NPEO – 

103-90-2 paracetamol – 

68631-49-2 

PBDE-153 PBDE-153 

5436-43-1 

PBDE-47 PBDE-47 

14797-73-0 

perchlorate – (continued on next page) 
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2.3. Endocrine-disrupting chemical-protein associations 

Human proteins known to be associated with each of the 34 EDCs 
were extracted from the U.S. Environmental Protection Agency web- 
based CompTox Chemistry dashboard (https://comptox.epa.gov/dash 
board), which contains a wide range of data related to chemical 
toxicity, physico-chemical properties, human exposure, and in vitro 
bioassay data (agonist, antagonist, up- and down- regulation) for over 
87,500 chemicals (as of April 30, 2020) (Williams et al., 2017). 

Each linked protein was matched to a gene symbol and classified 
using the Panther (protein analysis through evolutionary relationships) 
classification system (http://www.pantherdb.org/about.jsp) (version 
15, released February 14, 2020) (Mi et al., 2013). The Panther database 
is a biological database of gene/protein families, and their functionally 
related subfamilies that can be used to classify and identify the function 
of gene products. This database results from a human curation and 
advanced bioinformatics algorithms, and the current version contains 
15,702 protein families, divided into 1,239,989 functionally distinct 
protein subfamilies. 

2.4. Disease-protein associations 

From two human protein-disease databases, proteins known to be 
linked to the 13 studied diseases were listed (as of April 29, 2020 for 
both data sources). The DisGeNet database is a discovery platform 
containing one of the largest publicly available collections of genes and 
variants associated with human diseases (https://www.disgenet.org/) 
(Pinero et al., 2015). DisGeNet integrates data from expert curated 

repositories, GWAS catalogues, animal models and the scientific litera-
ture. The current version contains 1,134,942 gene-disease associations 
between 21,671 genes and 30,170 diseases. The GeneCards database 
contains manually curated information for substances and their associ-
ations to genes and proteins, that are scored (https://www.genecards. 
org/) (Safran et al., 2010). GeneCards integrates gene-centric data 
from more than 150 web sources, including genomics, transcriptomics, 
proteomics, clinical and functional annotations. The current version 
contains information for 270,168 genes, and among them 18,871 are 
known to be linked to human diseases. For the present study, only as-
sociations were kept only for those between human diseases and pro-
teins categorized as coding proteins, and all non-human information, 
including gene clusters, genetic locus, pseudogenes, RNA genes and 
those uncategorized were disregarded. All listed proteins were matched 
to their gene symbol to facilitate further analysis. Each identified protein 
from both databases, was categorized into the protein class using the 
Panther classification (version 15). 

2.5. Pathways enrichment analysis 

To decipher biological pathways potentially linked to the selected 
EDCs and explore if they might overlap with the ones known for COVID- 
19, an ORA was done. Four major sources of protein-pathway infor-
mation were independently integrated, i.e., using the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG), the Reactome, the Wiki-pathways 
and the Panther databases (Fabregat et al., 2018; Kanehisa et al., 2019; 
Mi et al., 2013; Slenter et al., 2018). The KEGG database is a collection of 
manually drawn pathways maps representing existing knowledge of the 

Table 1 (continued ) 
CAS Chemical name Abbreviation Chemical structure 

1763-23-1 
perfluorooctane sulfonic acid PFOS 

335-67-1 

perfluorooctanoic acid PFOA 

67747-09-5 

prochloraz – 

153719-23-4 

thiamethoxam – 

688-73-3 

tributyltin TBT 

3380-34-5 
triclosan – 
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molecular interaction, reaction and relation networks for several levels 
of the biological systems (https://www.genome.jp/kegg/pathway. 
html). The current version contains 537 pathway maps that include 
724,592 references. The Reactome database is a manually curated and 
peer-reviewed source of pathway information (https://reactome.org/), 
which provides data related to several species. Regarding human data, 
2423 pathways are currently described involving 10,923 proteins. The 
wiki-pathways is an open and collaborative platform dedicated to the 
curation of biological pathways. It has information related to 2887 
pathways for several species (1200 are for human). Finally, the panther 
pathways database (http://www.pantherdb.org/) contains information 
for various species, among them 6976 human genes are annotated to 
2608 pathways. To assess the statistical significance of the protein- 
pathway relationships, a hypergeometric test was used for each of the 
four sources, followed by a multiple testing correction of the p-values 
with the Benjamini-Hochberg method. The ORA was performed on the 
common proteins identified to identify the most strongly linked proteins 
that are affected by the EDCs and also associated with at least one the 13 
comorbidities. As a last step, manual curation allowed us to consider 
relevant outcomes for interpretation. The four data sources provided 
complementary information, with some overlapping findings. 

2.6. COVID-19 and biological mechanism of action 

Linkage between COVID-19 and potential biological targets and 
affected pathways were extracted from the literature using the PubMed 
database (as of May 22, 2020) and the AOP-Wiki database (as of May 22, 
2020). The PubMed database comprises more than 30 million references 
to biomedical literature from MEDLINE, life science journals, and online 
books (https://pubmed.ncbi.nlm.nih.gov. The AOP-Wiki database is 
part of the larger OECD AOP knowledge base that represents the central 
repository for all AOPs developed (https://aopwiki.org/). The current 
version contains 306 AOPs involving 582 stressors (chemicals). 

3. Results 

3.1. Endocrine-disrupting chemical-protein associations 

From the CompTox database, information on the links between 
chemicals and human proteins were compiled. Data for 30 of the 34 
chemicals could be retrieved, and a total of 208 unique human proteins 
were involved via 1632 associations. No information was retrieved for 
hexachlorobenzene, nonylphenol ethoxylate, perchlorate and tribu-
tyltin. Perfluorooctane sulfonic acid (PFOS) targeted the highest number 
of proteins (113), and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153) was 
associated with only one biological target (the progesterone receptor). 
The most frequently affected proteins included the androgen receptor 
(AR) and the estrogen receptor-alpha (ESR1), which were each linked to 
23 EDCs, whereas 61 individual proteins were associated with only one 
EDC. 

To identify the biological targets that are most often affected by 
EDCs, proteins were grouped in clusters according to their families, as 
based on the Panther classification system (Fig. 2). The majority of the 
208 proteins related to EDCs belonged to 12 classes among the 23 pre-
sent in Panther, while the remaining proteins were classified as ‘unca-
tegorized protein class’. Each protein was assigned to only one category, 
although only one of them, HLA-DRA, (HLA class II histocompatibility 
antigen, DR alpha chain) belonged to the defense/immunity group. 
Other immunity-related proteins. such as interleukin 6 (IL-6) or inter-
leukin 1 alpha (IL-1A), were not associated with any class in the Panther 
classification. We therefore manually added all immune system-related 
proteins to the “uncategorized class”. Given that Bisphenol A (BPA) in-
creases the release of these proteins(Ben-Jonathan et al., 2009), and 
because antibodies to the IL-6 receptor (such as tocilizumab) or to the IL- 
1 receptor (such as Anakinra) are currently tested for the treatment of 
COVID-19 patients (Zhou et al., 2020), we also explored if the proteins 

selected could be mapped to defense and/or immunity biological cate-
gories. For this purpose, we used the Gene Ontology (GO) classification 
(as of May 26, 2020), and among the 208 proteins dysregulated by EDCs, 
58 were associated with inflammatory response, 75 with defense 
response, and 66 with regulation of immune system process. 

3.2. Disease-protein associations 

Regarding diseases associated with human proteins, two databases 
were screened. From the DisGeNET database, we were able to retrieve 
information for 8 of the 13 diseases, which were connected to 3262 
unique proteins via 7195 links (as of April 29, 2020). The proteins were 
categorized in 22 protein classes using the Panther classification 
(version 15) (Figure S1). Proteins that did not belong in any class were 
again grouped into the uncategorized class. Obesity and diabetes were 
linked to proteins belonging to each of the 22 categories, whereas in-
sulin resistance and dyslipidemia were linked to only half of the 
categories. 

From the GeneCards database, all 13 predisposing diseases were 
retrieved (as of 29 April 2020), and a total of 115,289 associations were 
identified between the diseases and 29,094 unique human proteins were 
extracted. Among them, only protein-coding information according to 
HGNC, Ensembl or Entrez Gene were kept (proteins data related to 
biological regions, gene clusters, genetic loci, pseudogenes, non-coding 
RNA genes and uncategorized elements were not considered), thereby 
reducing the total number of unique protein to 18,931, representing 
97,855 disease-protein links. As a next step, grouping of the proteins 
using the Panther classification system allowed identification of 23 
clusters correspond to the 23 different protein classes (Figure S2). Each 
protein was assigned to only one category, except for ameloblastin 
(AMBN), which was associated with both ‘extracellular matrix protein’ 

and ‘structural protein’. Proteins not associated with Panther classes, 
were again grouped into the uncategorized class. Excluding the viral or 
transposable element protein class, all diseases (except dyslipidemia) 
were associated with all the other Panther classes. 

In order to keep the most relevant protein-disease associations ob-
tained from the GeneCards database, data were filtered based on their 
scores. The GeneCards scores are calculated based on publications 
mentioning a protein and a disease, using a Boolean model. The higher 
the score, the more relevant the protein-disease association is. Among 
the 97,855 links between the 13 diseases and 18,931 proteins, the score 
values ranged between 0.13 (representing very low association) to 228 
(very high evidence for a protein-disease connection). After evaluation 
of the extracted data (number of proteins by GeneCards scores), we 
selected associations with a score ≥ 20 (see Figure S3). Within this 
threshold, a total of 5732 associations were retained that link the 12 
diseases with 2079 unique human proteins (no information was retained 
for ‘dyslipidemias’ from the GeneCards database). 

Table 2 
List of the 13 diseases.  

Obesity  
Impaired respiratory mechanisms respiratory dysfunction 
Increased airway resistance respiratory dysfunction 
Impaired gas exchange respiratory dysfunction 
Low lung volume respiratory dysfunction 
Low muscle strength respiratory dysfunction 
Cardiovascular disease comorbidities 
Diabetes mellitus comorbidities 
Kidney disease comorbidities 
Hypertension metabolic risk 
Prediabetes metabolic risk 
Insulin resistance metabolic risk 
Dyslipidemia metabolic risk  
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3.3. Generating a tripartite network of protein-EDC-disease associations 

A human bipartite associative network of proteins and the 13 dis-
eases was created. Among the 3262 unique proteins from the DisGeNET, 
and the 2079 proteins from the GeneCards databases, 1157 were over-
lapping proteins and only 922 and 2105 proteins were uniquely asso-
ciated with GeneCards or DisGeNET, respectively. All 4184 unique 
proteins were again grouped into 23 clusters using the Panther classi-
fication (the class ‘viral or transposable element protein’ was not kept 
after the cleaning step. Among the groupings, we retrieved a cluster of 
proteins linked to the ‘defense/immunity’ category. These results were 
merged with the bipartite protein-EDCs network to develop a tripartite 
network (Fig. 2). 

3.4. Translation into pathways 

To identify biological pathways that may be involved in the predis-
posing diseases while also being dysregulated by the EDCs, we first 
analyzed the overlaps between the two sets of proteins. Among the 
proteins identified from the three data sources, 98 were common 
(Figure S4), and all of them were mapped to unique Entrez GeneID, and 
could therefore be used for biological enrichment analyses, which were 
performed independently using four data sources (KEGG, Reactome, 
Wiki-pathways and Panther). The ORA analysis revealed several statis-
tically significant pathways linked to interleukins/cytokines signaling, 
intracellular signaling pathways and, regulation of metabolic pathways 
(Table 3). Interestingly, the different data sources showed very signifi-
cant associations with common pathways, such as interleukins (IL) 
related pathways: IL-4 and IL-13, IL-10 signaling pathways (padj < E-16, 
and padj of 2.85E-09 respectively, Reactome), IL-17 signaling pathway 
(padj of 1.05E-10, KEGG), IL-3, IL-5 and IL-18 signaling pathways (padj of 
1.09E-09, 2.52E-09, 1.49E-08 respectively, Wiki-pathways), the IL- 
signaling pathways (padj of 1.10E-05, Panther); or the Toll-like recep-
tor signaling pathway (padj 3.91E-09 for KEGG, padj of 0.99 for Panther 
and padj 1.93E-08 for Wiki-pathways). 

Among the most significant pathways, several were retrieved from 
each of the data sources with relation to the AGE/RAGE pathway (i.e. 

Advanced Glycation End products and its receptor), which is known to 
cause cellular stress and inflammation. The AGE are formed non- 
enzymatically, by Maillard reaction products (carbohydrates with pro-
teins and/or lipids) and bind to the RAGE. Formation of AGE has been 
associated with chronic diseases such as type 2 diabetes (Cai et al., 2012; 
Menini et al., 2018). Similarly, the stress or inflammatory pathways (e.g. 
shear stress, defined as the tangential force exerted by the blood flow on 
the vascular endothelium, TNF-alpha) are highlighted by our analysis; 
the shear stress activates the AhR signaling pathway, which is also 
involved in the regulation of IL-17 production by the Th17 lymphocytes; 
interleukin 17 has been suspected to be involved in the pathogenesis of 
COVID19 (Guti19nvolved in the regulation of IL-17 production by Pacha 
et al., 2020). Interestingly, inflammation is suspected to influence in-
sulin resistance. 

We went one step further and explored at the chemical level the 
linkage between the main identified pathways via the proteins that 
chemicals are known to target. Many chemicals target proteins that are 
common to several pathways, and thus most of the EDCs examined 
overlap with several pathways, as illustrated by four main KEGG path-
ways identified (Fig. 3). Regarding the pathways AGE/RAGE (AR in 
Fig. 3) and IL-17 (IL in Fig. 3), most of the linked chemicals were 
common, probably due to the high number of overlapping proteins in 
these pathways (Fig. 3). Indeed, among the 22 proteins targeted by EDCs 
and involved in the AGE/RAGE pathways, and the 14 proteins for the IL- 
17 pathways, eight were common to both pathways (JUN, CCL2, CXCL8, 
MAPK3, NFKB1, IL6, MAPK1, TNF). However, our studies revealed that 
bisphenol compounds and PFAS substances may be linked to both 
pathways. 

3.5. Exploration of EDCs linkage to COVID-19 

To explore putative links between COVID-19 and exposure to EDCs, 
we first screened the AOP-Wiki database, and then further examined the 
pathways identified using literature references. 

In the AOP-Wiki database, only one AOP was related to COVID-19, 
and it involves several key events, such as ‘increased pro- 
inflammatory mediators’ (KE 1496), ‘increased inflammatory immune 

Fig. 2. Tripartite network representation of endocrine-disrupting chemicals-proteins-diseases relationships. First, a bipartite network of the 208 human 
proteins known to be dysregulated by the 30 endocrine-disrupting chemicals (EDCs) was created as extracted from the CompTox database. Each yellow diamond 
node represents an EDC, and edges are the interactions between EDCs and proteins. Then, a second bipartite network was generated for the 4184 human proteins 
known to be linked to the 13 predisposing diseases, as extracted from the DisGeNET (3262 links) and GeneCards (2079 links) databases. Each red square node 
represents a disease, and edges are the interactions between diseases and proteins. A total of 1156 proteins were overlapping. All proteins were grouped using the 
Panther classification system (version 15) and are represented by circles (colors are according to their Panther family classes). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 3 
Pathway enrichment for the set of proteins that are linked to both the predisposing diseases and to the EDCs. The pathways were extracted from the KEGG, 
Panther, Reactome and the Wikipathways database.  

Data sources Name of pathways Proteins* P-value FDR** 
KEGG AGE-RAGE signaling pathway in diabetic complications 22 < E−16 < E−16 
KEGG Fluid shear stress and atherosclerosis 20 2.22E−16 1.81E−14 
KEGG TNF signaling pathway 18 8.8E−16 5.79E−14 
KEGG Insulin resistance 17 1.04E−14 5.67E−13 
KEGG Endocrine resistance 15 7.81E−13 2.40E−11 
KEGG MAPK signaling pathway 23 8.84E−13 2.40E−11 
KEGG HIF−1 signaling pathway 15 1.06E−12 2.66E−11 
KEGG Non-alcoholic fatty liver disease (NAFLD) 17 2.83E−12 5.77E−11 
KEGG FoxO signaling pathway 16 5.17E−12 9.36E−11 
KEGG IL-17 signaling pathway 14 6.11E−12 1.05E−10 
KEGG EGFR tyrosine kinase inhibitor resistance 13 1.14E−11 1.85E−10 
KEGG PI3K-Akt signaling pathway 23 3.88E−11 5.51E−10 
KEGG Prolactin signaling pathway 12 4.50E−11 6.12E−10 
KEGG Ras signaling pathway 19 4.91E−11 6.40E−10 
KEGG Thyroid hormone signaling pathway 14 1.32E−10 1.39E−09 
KEGG Toll-like receptor signaling pathway 13 4.08E−10 3.91E−09 
KEGG Insulin signaling pathway 14 1.25E−09 1.07E−08 
KEGG Human T-cell leukemia virus 1 infection 18 1.93E−09 1.57E−08 
KEGG Chronic myeloid leukemia 11 2.02E−09 1.58E−08 
KEGG B cell receptor signaling pathway 10 1.50E−08 1.09E−07 
KEGG T cell receptor signaling pathway 11 4.34E−08 3.01E−07 
KEGG C-type lectin receptor signaling pathway 11 5.90E−08 4.01E−07 
Panther Interleukin signaling pathway 12 1.94E−07 1.10E−05 
Panther Insulin/IGF pathway-protein kinase B signaling cascade 7 1.51E−05 3.42E−04 
Panther Ras Pathway 9 3.61E−05 6.80E−04 
Panther T cell activation 9 6.34E−05 8.95E−04 
Panther PI3 kinase pathway 7 1.12E−04 0.0012 
Panther Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade 5 5.81E−04 0.0050 
Panther Inflammation mediated by chemokine and cytokine signaling pathway 13 8.29E−04 0.0062 
Panther B cell activation 6 0.0026 0.0154 
Panther FGF signaling pathway 8 0.0034 0.0183 
Panther EGF receptor signaling pathway 8 0.0063 0.0324 
Panther Interferon-gamma signaling pathway 2 0.1423 0.5544 
Panther JAK/STAT signaling pathway 1 0.3137 0.9401 
Panther Toll receptor signaling pathway 2 0.3521 0.9947 
Reactome Signaling by Interleukins 31 < E−16 < E−16 
Reactome Interleukin-4 and Interleukin-13 signaling 21 < E−16 < E−16 
Reactome Cytokine Signaling in Immune system 33 5.55E−16 3.20E−13 
Reactome Interleukin-10 signaling 10 1.05E−11 2.85E−09 
Reactome Negative regulation of the PI3K/AKT network 13 1.16E−11 2.85E−09 
Reactome PIP3 activates AKT signaling 18 1.83E−11 3.51E−09 
Reactome PI3K/AKT Signaling in Cancer 12 6.79E−11 1.17E−08 
Reactome Cytochrome P450 - arranged by substrate type 10 3.70E−10 5.81E−08 
Reactome PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 11 1.43E−09 2.07E−07 
Reactome Signaling by Receptor Tyrosine Kinases 19 2.43E−08 2.70E−06 
Reactome Insulin receptor signalling cascade 8 2.79E−08 2.84E−06 
Reactome Signaling by Insulin receptor 8 5.25E−07 3.27E−05 
Reactome MAPK family signaling cascades 13 2.57E−06 1.14E−04 
Reactome Constitutive Signaling by Aberrant PI3K in Cancer 7 3.66E−06 1.58E−04 
Reactome Immune System 37 7.14E−06 2.94E−04 
Wiki-pathway Netrin-UNC5B signaling Pathway 15 2.22E−16 1.18E−13 
Wiki-pathway Nonalcoholic fatty liver disease 20 3.06E−14 2.71E−12 
Wiki-pathway Aryl Hydrocarbon Receptor Netpath 12 1.32E−12 6.36E−11 
Wiki-pathway AGE/RAGE pathway 13 3.93E−12 1.61E−10 
Wiki-pathway Insulin Signaling 18 5.35E−12 2.03E−10 
Wiki-pathway RAC1/PAK1/p38/MMP2 Pathway 13 7.18E−12 2.38E−10 
Wiki-pathway Relationship between inflammation, COX-2 and EGFR 9 2.42E−11 7.32E−10 
Wiki-pathway IL-3 Signaling Pathway 11 4.31E−11 1.09E−09 
Wiki-pathway Ras Signaling 18 5.70E−11 1.38E−09 
Wiki-pathway IL-5 Signaling Pathway 10 1.09E−10 2.52E−09 
Wiki-pathway PI3K-Akt Signaling Pathway 23 2.10E−10 4.13E−09 
Wiki-pathway Aryl Hydrocarbon Receptor Pathway 10 7.67E−10 1.13E−08 
Wiki-pathway IL-18 signaling pathway 20 1.09E−09 1.49E−08 
Wiki-pathway Cells and Molecules involved in local acute inflammatory response 7 1.48E−09 1.91E−08 
Wiki-pathway Toll-like Receptor Signaling Pathway 13 1.52E−09 1.93E−08  
* Number of proteins from the studied set that is involved in a pathway. 
** False discovery rate. 
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responses’ (KE 1750), which leads to the adverse outcome ‘increased 
mortality’ (AO 351). Such knowledge-based linear chain of events 
highlights the importance of the link between COVID-19 and inflam-
matory processes. 

4. Discussion 

In order to investigate possible links between exposure to EDCs and 
the severity of COVID-19, we explored a computational systems biology 
approach. The tripartite network model first linked EDCs to targeted 
proteins and then proteins related to diseases that predispose to more 
serious COVID-19 development, thereby allowing us to identify common 
signaling pathways. The identification of such joint pathways and their 
role as possible targets of EDCs highlights the potential links between 
exposure to environmental chemicals and COVID-19 severity. 

This integrative approach can be easily applied as a new approach 
methodology (NAM) (Bopp et al., 2019), which may offer support to 
methods alternative to animal testing or to identify biological pathways 
that require more focused laboratory study. Previous studies have 
demonstrated that systems chemical toxicology models combined with 
computational network biology may help in understanding chemical 
toxicity in humans (Hartung et al., 2017; Nie et al., 2015; Taboureau and 
Audouze, 2017). Our tripartite network supports the notion that expo-
sure to EDCs may contribute to aggravation of COVID-19. Although 
major links were identified at extremely low p values, the approach 
relies on existing information available in within the very substantive 
data sources, but some causal associations may have been overlooked or 
disregarded because of missing or incomplete information. For example 
TCDD was connected to the endocrine resistance pathways via the ESR1 
protein, and bisphenol compounds and PFASs were linked to the IL-17 
signaling pathways (via four proteins for BPs, ten proteins for PFAS) 
and to the AGE/RAGE signaling pathways (via five proteins for BPs, 17 
proteins for PFAS) (Fig. 3). 

To assess the validity of our approach, a more focused expert analysis 
was attempted, where we selected the IL-17 and the AGE/RAGE 
signaling pathways because of their pathophysiological relevance in the 
context of COVID-19. The interleukin-17 (IL-17) signaling pathway 
plays several important roles, and IL-17 is produced by a pro- 
inflammatory subtype of T helper lymphocytes named Th17 cells, 
located at mucosal barriers where they contribute to pathogen clear-
ance. The IL-17 produced stimulates the synthesis of cytokines (IL1ß, 
TNF-alpha…) and chemokines (MCP-1…) by other cell types, thereby 
favoring the recruitment of monocytes and neutrophils at inflammatory 
sites. However, an over-activation of Th17 cells can lead to a hyper- 
inflammatory state which is deleterious (Pacha et al., 2020). 

The highly variable symptomatology associated with the infection by 
SARS-CoV-2 depends on the levels of IL-17 and of other cytokines 
including IL-1ß, IL-6, IL-15, TNF-alpha and IFNγ. The most deleterious 
effect of SARS-CoV-2 in humans is an acute lung injury leading to a 
severe acute respiratory syndrome (SARS) that is partly due to IL-17- 
related excessive recruitment of pro-inflammatory cells and produc-
tion of pro-inflammatory cytokines. Therefore, an increased basal level 
of IL-17 (in the absence of infection, for example due to obesity or to 
induction by a chemical) might represent a lung injury risk associated 
with SARS-CoV-2 infection. Our finding of EDC linkage to this pathway 
is therefore of high pathogenetic relevance. 

Obesity promotes a high basal level of inflammation which con-
tributes to insulin resistance and type 2 diabetes (Goldberg, 2009). This 
phenomenon is due to an infiltration of the adipose tissue (AT) by 
macrophages and T cells and their production of various pro- 
inflammatory cytokines, including IL-1ß, TNF-alpha, IL-17 and IL-6. 
Several EDCs are suspected to be obesogenic (and are subsequently 
named obesogens). This has been demonstrated for several substances 
(e.g. tributyltin) and linked to the stimulation of pro-adipogenic 
signaling pathway (e.g. through PPARγ) (Egusquiza and Blumberg, 
2020). Similarly, the aryl hydrocarbon receptor (AhR) is highly 

Fig. 3. Venn diagram Illustrating the distribution of chemical links to different KEGG pathways identified after biological enrichment. The following four 
pathways were considered as an example: IR (Insulin resistance), ER (endocrine resistance), IL (IL-17) and AR (AGE/RAGE). Number represent the number of EDC 
chemicals linked to each pathway. The Venn diagram shows that the majority of chemicals are linked to the four pathways and few are specific. This may be related 
to the overlapping proteins in these pathways (see text). 
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expressed in Th17 cells and is an essential contributor to the production 
of IL-17(Veldhoen et al., 2008). The AhR, known as the receptor of di-
oxins and dioxin-like PCBs, is also activated by shear stress (SS), another 
pathway highlighted in our computational analysis. Indeed, several 
studies have shown using various endothelial models that laminar SS 
leads to the activation of two target genes of the AhR, namely CYP1A1 
and CYP1B1 (Conway et al., 2009). Two recent studies suggest an in-
direct link between SARS-CoV-2 and SS by showing that the expression 
of ACE2 (angiotensin-converting enzyme 2), the receptor of the virus, is 
increased by SS (Song et al., 2020). 

These observations support a dual impact of EDCs on IL-17 produc-
tion and inflammatory state; this impact could be indirect due to the 
effect of these chemicals on obesity or through a direct stimulation of 
several signaling pathways, such as AhR or PPARγ, leading to an over-
production of systemic IL-17; the shear stress pathway represents an 
additional link between AhR activation and the EDC/disease connec-
tion. The implication of shear stress also suggests a possible contribution 
of increased expression of ACE2, the receptor of the SARS-CoV-2. While 
the role of these pathways at the nexus between exposure to EDCs and 
COVID-19 severity appears to be relevant, their actual contribution re-
mains to be demonstrated and their putative role as therapeutic targets 
remains to be further substantiated. 

Our integrative systems biology study also indicates a strong statis-
tical association between the AGE/RAGE signaling pathway, chronic 
diseases and EDC effects. This is likely due to the well-known links be-
tween this pathway and type 2 diabetes (Ravichandran et al., 2019). 
Indeed, hyperglycemia leads to increased amounts of glycation products 
and their metabolites which results in the activation of the RAGE re-
ceptors. The latter are highly expressed in endothelial cells, and their 
activation leads to increased oxidative stress and inflammation and ul-
timately to endothelial damage, thrombotic disorders and vascular dis-
eases (Egaña-Gorroño et al., 2020). Other endogenous ligands can also 
activate RAGE, among them HMGB1 (high-mobility group box 1), an 
extra-cellular protein also linked to a variety of inflammatory responses 
(Andersson et al., 2020). Interestingly, the AGE/RAGE signaling 
pathway is highly expressed in the lung vasculature and has been 
implicated in several pulmonary diseases (Oczypok et al., 2017). All 
these observations support the implication of the AGE/RAGE signaling 
pathway in vascular, thrombotic and lung diseases which are the hall-
marks of COVID-19 severity. Interestingly, there are also complex con-
nections between HMGB1 and ACE2 which is the receptor for SARS- 
Cov2 and other coronaviruses (Luft, 2016). These results are in accor-
dance with recent proposals in published commentaries of environ-
mental chemical impacts on COVID-19 progress (Andersson et al., 2020; 
Rojas et al., 2020). 

The three-way approach did not attempt to identify direct immu-
notoxic effects due to environmental chemicals otherwise considered to 
be EDCs. However, some of the EDCs selected, i.e., PCB-153, PFOA and 
PFOS, are known to have immunotoxic properties (Heilmann et al.), and 
the same is true for some common air pollutants (Tsatsakis et al., 2020). 
Accordingly, the impact of environmental chemicals on COVID-19 
severity demands attention. 

Inflammation appears to be a critical mechanism for both EDCs and 
COVID-19, with many possible implications that could be foreseen. First, 
non-EDCs pollutants also trigger inflammation, and the question of a 
mixture effects between these pollutants and EDCs is highly relevant. 
From a risk assessment perspective, it would be useful to test whether 
inflammatory markers constitute relevant effect markers of such con-
taminants and thus provide a link to the pathogenesis of relevant dis-
eases. The present study therefore opens new perspectives for research 
on the interaction between chemicals, chronic and infectious diseases. 
As an illustration, the immune system may serve as a link between 
chemical and biological stressors. While evidence already demonstrates 
the role of the AhR system in regard to the regulation of TH17 cells and 
other immune targets, our study suggests a need to examine the role of 
the other signaling pathways triggered by EDCs and on the interaction of 

these pathways with, e.g., the AhR pathway. 
The increased availability of high throughput data, will continue to 

improve the precision and robustness of computational modeling. For 
example, in a previous pilot study, the authors used three levels of ev-
idence concerning chemical-disease links to perform a human environ-
mental disease network model (Taboureau and Audouze, 2017). Other 
possible extensions of such models would be to integrate more data, 
quantitative information such as dose levels, and the biological 
complexity and organization at several levels (cells, tissues and organs) 
(Taboureau et al. 2020) in order to evaluate more closely the potential 
toxicity of EDCs on human health. In addition, novel in vitro approaches 
using human organoids or 3D cell systems are also critical to improve 
our knowledge on the effects of chemicals in agreement with the 3R 
principle. These studies will be complementary to the ones presented 
here, thus highlighting the potential of applying and further developing 
in silico models to identify potential harmful effects from chemical 
exposure. 

5. Conclusion 

The results of this computational study appear as a promising initial 
step toward systematically linking a major group of environmental 
chemicals to the severity of COVID-19, although the findings need to be 
further supported by high-throughput screening tests, clinical and 
experimental data. Nevertheless, these observations bridge environ-
mental stressors and infectious diseases and support an integrated 
exposome approach. Preliminary focus on the AGE/RAGE and IL-17 
pathways illustrates the potential connection between exposure to 
EDCs and diseases predisposing to COVID-19 severity. 
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