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Abstract

Background: Previous epidemiologic studies on gestational chemical exposures and autism 

spectrum disorder (ASD) often lack analysis of chemical mixtures or are limited to investigating 

certain chemical classes.

Objective: We examined the impact of multi-class chemical mixtures on ASD risk, using data 

from the MARBLES (Markers of Autism Risks in Babies-Learning Early Signs) cohort.

Methods: Children were clinically assessed at age 3 and classified as ASD, typical development 

(TD), or non-TD with other neurodevelopmental concerns. In blood or urine from 105 pregnant 

mothers, we quantified 42 biomarkers across 5 chemical classes: per- and polyfluoroalkyl 

substances (PFAS), parabens, phenols, phthalates, and organophosphate esters (OPEs). We only 

analyzed 30 biomarkers detected in >50 % of the sample. After identifying clusters with similar 

chemical profiles via hierarchical clustering, we applied linear discriminant analysis (LDA) to 

compute LDA exposure summary scores. In covariate-adjusted models, we used LDA scores 

to assess co-adjusted, multipollutant associations (relative risk [RR]) with ASD or non-TD, via 
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quasi-Poisson regression. We further examined overall mixture effect and chemical interactions 

with Bayesian kernel machine regression.

Results: We identified four distinct clusters: PFAS (Cluster 1), OPEs (Cluster 2), parabens and 

triclosan (Cluster 3), and phthalates and bisphenol A (Cluster 4). Relative to TD, LDA scores for 

each cluster were associated with increased risk of ASD (RR [95 % CI]: 1.14 [1.03, 1.25], 1.12 

[1.01, 1.24], 1.17 [1.07, 1.29], 1.17 [1.07, 1.28] for Cluster 1–4, respectively), whereas clusters 

2 and 4 were associated with non-TD (1.07 [1.01, 1.14] and 1.12 [1.05, 1.19], respectively). 

Cumulative exposure across the four clusters was linked to increased risk of both ASD and 

non-TD. Potential interactions within and between clusters were observed.

Conclusion: This study shows that considering multiple chemical classes resulted in stronger 

associations with ASD and non-TD risk, compared to when investigated separately in our previous 

studies.
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1. Introduction

Autism spectrum disorder (ASD) is an increasing public health concern, with 1 in 

36 children in the U.S. diagnosed with ASD. Its prevalence rate has increased by 

more than three times over the past two decades (Maenner et al., 2023). Although 

the causes of the increase are not fully understood, gestational or early-life chemical 

exposures are increasingly known as contributing factors (Braun, 2017; Lyall et al., 2017). 

Endocrine-disrupting chemicals, such as parabens, per- and polyfluoroalkyl substances 

(PFAS), phenols, phthalates, and organophosphate esters (OPEs), have been detected in 

the biospecimens of pregnant women, implying gestational chemical exposures to the 

developing fetus (Adibi et al., 2008; Lee et al., 2018b; Li et al., 2023; Monroy et al., 

2008; Song et al., 2020; Zheng et al., 2022). Many epidemiological studies have reported 

associations between gestational exposures to these chemicals and ASD or ASD-related 

behaviors (Ames et al., 2023; Barkoski et al., 2019; Haggerty et al., 2021; Kim et al., 2021; 

Oh et al., 2021; Shin et al., 2018, 2020a). However, prior studies have investigated only one 

or a few chemical classes or lack an analysis of chemical mixture effects such as additive, 

synergistic, or antagonistic interactions across chemical classes.

While many studies have examined associations between combined exposure to multiple 

chemicals during pregnancy and child neurodevelopment (Brennan Kearns et al., 2024; 

Guo et al., 2020; Hamra et al., 2019; Jedynak et al., 2021; Kalloo et al., 2021; Oskar 

et al., 2024; Tanner et al., 2020; Tsai et al., 2023; van den Dries et al., 2021; Vuong 

et al., 2020; Yonkman et al., 2023), studies on the chemical mixture effects on ASD are 

limited. These studies have targeted two to seven chemical classes and focused on various 

neurodevelopmental outcomes, including ASD, intellectual disability, cognitive ability, 

and behavior problems. Only three studies investigated associations between gestational 

exposures to chemical mixtures and child ASD or autistic behaviors (Hamra et al., 2019; 

Tsai et al., 2023; van den Dries et al., 2021). A U.S. cohort study investigated associations 
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between ASD and a mixture of 25 chemicals in five classes (polybrominated diphenyl 

ethers [PBDEs], polybrominated biphenyls [PBBs], polychlorinated biphenyls [PCBs], 

organochlorine pesticides [OCPs], PFAS) but found no significant associations (Hamra et 

al., 2019). A Dutch study examined associations between autistic behaviors and a mixture 

of 17 chemicals in three classes (phthalates, bisphenol, organophosphate pesticides [OPPs]) 

and also found no significant associations (van den Dries et al., 2021). A Taiwanese study 

investigated associations between autism spectrum problems and mixtures of 15 chemicals 

in metals and phthalates (Tsai et al., 2023). Notably, this Taiwanese study found that 

the mixtures of metal and phthalates were associated with autism spectrum problems, 

although the outcomes were not associated with individual chemical biomarkers, suggesting 

the need to consider combined exposure to multiple chemical classes. These studies 

applied multiple statistical methods such as the Bayesian approach and quantile-based 

g-computation to examine exposure to mixtures. However, little is known about interactions 

between chemicals within various chemical mixtures, or across chemical classes, which may 

elucidate additive, synergistic, or antagonistic effects of chemical mixtures on ASD.

Previous epidemiologic studies of ASD in the MARBLES (Markers of Autism Risk 

in Babies – Learning Early Signs) cohort examined gestational exposures to individual 

chemical classes in association with childhood ASD. However, these studies have been 

limited in performing comprehensive mixture analyses (Barkoski et al., 2019, 2021; Dou 

et al., 2024; Oh et al., 2021; Philippat et al., 2018; Shin et al., 2018). While these studies 

showed statistically significant or marginal associations between ASD and a few compounds 

within each chemical class, they provide limited understanding of the overall impact of 

gestational chemical exposures on ASD. Therefore, this current study aims to investigate 

the impact of mixtures of multiple chemical classes on ASD by leveraging the MARBLES 

data (Hertz-Picciotto et al., 2018). Given our small sample size of mother-child pairs (n = 

110), we first utilized a two-step approach – clustering followed by dimension reduction 

– to identify combinations of chemical exposures (i.e., clusters) that summarize exposure 

levels within each cluster. Then, we evaluated the associations between summarized scores 

of these clusters and the outcome. Additionally, we examined the interactions within and 

across clusters.

2. Materials and methods

2.1. Study population

For this current study, we used the data from the MARBLES cohort (Hertz-Picciotto et al., 

2018). Since 2006, the MARBLES study has recruited pregnant women who already had a 

child diagnosed with ASD and were thus at elevated likelihood (~20 %) of having another 

child who may develop ASD (Hertz-Picciotto et al., 2018; Ozonoff et al., 2011, 2024). Most 

participants were recruited from a list of families receiving state-funded services for children 

with ASD. Participants were eligible if they i) had one or more children with ASD; ii) were 

at least 18 years old; iii) spoke, read, and understood English; and iv) lived within 2.5 h 

of the Davis/Sacramento region. Study protocols were approved by the Institution Review 

Boards for the University of California Davis (UC Davis) and the State of California. All 

data were collected with informed consent of participants. Details of the study design, 
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recruitment methods, and data collection are available elsewhere (Hertz-Picciotto et al., 

2018).

For this study, we included 110 mother-child pairs with complete chemical measurement 

data from both urine and blood samples collected during pregnancy, as well as 

neurodevelopmental diagnostic data for the children. A flow chart for the study sample 

selection from the full cohort is shown in Fig. 1. Note that not all mothers had measurements 

of blood and urine samples during pregnancy and some mothers only had measurements 

of either urine or blood throughout the entire pregnancy. Because chemical analyses were 

conducted across different research projects in different years (from 2016 to 2021), the 

number and type of the samples used for the analysis of each chemical class vary, resulting 

in the reduced number of mother-child pairs, compared to the full cohort. Among the 110 

mother-child pairs, five mothers participated in the study for two separate pregnancies, 

resulting in a total of 105 unique mothers in the study population.

2.2. Child neurodevelopmental assessment

At approximately 3 years of age, children were administered the Autism Diagnostic 

Observation Schedule (ADOS), which is a standardized diagnostic tool for ASD (Lord et al., 

2000; Ozonoff et al., 2005). ADOS calibrated severity scores (CSS) are normalized scores 

for language ability and age, obtained from raw scores of the two ADOS sub-scales. The 

CSS has been utilized as a measure of ASD symptom severity and ranges from 1 to 10, with 

higher scores reflecting greater ASD symptom severity (Gotham et al., 2009). Children were 

also assessed for cognitive development using the Mullen Scales of Early Learning (MSEL), 

a standardized instrument for ages from birth to 36 months (Mullen, 1995). We classified 

child neurodevelopmental outcomes into ASD, typical development (TD), or non-typical 

development (non-TD) with other neurodevelopmental concerns using an algorithm based 

on Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) criteria as 

well as scores of ADOS (Lord et al., 2000; Ozonoff et al., 2005) and MSEL (Mullen, 1995). 

Children classified with ASD met DSM-5 criteria for ASD and had ADOS CSS ≥4 (n = 25). 

Children classified as non-TD (n = 20) did not meet DSM-5 criteria for ASD but had an 

ADOS CSS ≥3 and/or had two or more MSEL subscale scores ≥1.5 standard deviation (SD) 

below the mean, and/or had one more MSEL subtest score ≥2 SD below the mean. Children 

were classified as TD (n = 65) if they did not meet any of the above criteria (Ozonoff et al., 

2014) (Fig. S1).

2.3. Sample collection and chemical quantification

In MARBLES, both maternal blood and urine samples were collected during each trimester 

of pregnancy. For blood, study staff members collected a blood sample from all mothers 

in each trimester. For urine, each mother was instructed to collect three first morning void 

(FMV) samples for three consecutive weeks and a 24-h urine sample in each trimester. 

Samples were kept in a home freezer until the staff members came to retrieve them. Then, 

they were brought to the laboratory at UC Davis, aliquoted, and then stored at −80 °C until 

analysis. For whole blood, the samples were centrifuged for serum separation before storage.
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For phthalates, phenols, and parabens, when mothers provided three or more urine samples 

within a trimester, we selected the first FMV as an individual sample and pooled all 

remaining samples for that trimester and quantified them to reduce analytical costs. Among 

mothers who had measurements for all chemical classes included in this current study, only 

2nd and 3rd trimester samples remained. For OPEs, due to the limited analytical budget, we 

selected only the earliest 3rd trimester sample for each mother. However, if the samples were 

collected in the second half of the 3rd trimester, we selected the last sample from the 2nd 

trimester which is closer to the first half of the 3rd trimester. Details of sample collection, 

transport, and storage are described elsewhere (Hertz-Picciotto et al., 2018; Shin et al., 

2019). Sample type and collection times for each chemical class are shown in Supporting 

Information: Table S1.

A total of 42 biomarkers, including 9 PFAS in blood, 14 phthalate metabolites, 5 phenols, 

4 parabens, and 10 OPE metabolites in urine were analyzed (Table S2). Both PFAS and 

phthalates were analyzed at the Center for Disease Control and Prevention (CDC). Phenols 

and parabens were analyzed at the Laboratory of Exposure Assessment and Development 

for Environmental Research (LEADER), Rollins School of Public Health, Emory University. 

OPEs were analyzed at the Wadsworth Center-Human Health Exposure Analysis Resources 

(HHEAR) laboratory.

Using online solid-phase extraction coupled to high-performance liquid chromatography-

isotope dilution tandem mass spectrometry (LC-MS/MS), we quantified nine 

PFAS in serum, including perfluorohexane sulfonate (PFHxS), PFOS, PFOA, 

perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnDA), 

perfluorododecanoate (PFDoDA), 2-(N-methyl-perfluorooctane sulfonamido) acetate 

(MeFOSAA), and 2-(N-ethyl-perfluorooctane sulfonamido) acetate (EtFOSAA). We 

quantified 14 metabolites of eight phthalates in urine including monoethyl phthalate (MEP), 

mono-n-butyl phthalate (MBP), mono-hydroxy-n-butyl phthalate (MHBP), mono-isobutyl 

phthalate (MiBP), mono-hydroxy-isobutyl phthalate (MHiBP), monobenzyl phthalate 

(MBzP), mono(3-carboxypropyl) phthalate (MCPP), mono(2-ethylhexyl) phthalate (MEHP), 

mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate 

(MEOHP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), monoisononyl phthalate 

(MNP), mono-carboxyisooctyl phthalate (MCOP), and mono-carboxyisononyl phthalate 

(MCNP).

We also quantified five phenols, four parabens, and 10 OPE metabolites in urine. Analyzed 

phenols include bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), and triclosan 

(TCS) as well as triclocarban (TCC). Analyzed parabens include methyl paraben (MEPB), 

ethyl paraben (ETPB), propyl paraben (PRPB), and butyl paraben (BUPB).

Analyzed OPEs include diethyl phosphate (DEP), dipropyl phosphate (DPRP), sum of 

di-n-butyl phosphate and di-iso-butyl phosphate (DBUP/DIBP), bis(butoxyethyl) phosphate 

(BBOEP), bis(2-ethylhexyl) phosphate (BEHP), bis(2-chloroethyl) phosphate (BCEP), 

bis(1-chloro-2-propyl) phosphate (BCPP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), 

diphenyl phosphate (DPHP), and bis(2-methylphenyl) phosphate (BMPP). Details of 
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analytical methods and quality assurance and quality control (QA/QC) are shown in 

Supporting Information: 1. Additional Information on Chemical Quantification.

2.4. Exposure metric

For biomarker concentrations below the limit of detection (LOD), we used a proxy value 

(LOD/√2) (Hornung and Reed, 1990). For compounds or metabolites measured in urine, to 

account for urinary dilution, we measured specific gravity (SG) using a digital handheld 

refractometer (ATAGO Co., Ltd., Tokyo, Japan) and then corrected urinary biomarker 

concentrations by using the following formula: CSG = C × [(1.012–1)/(SG – 1)], where 

CSG is the SG-corrected concentration (ng/mL), C is the measured biomarker concentration 

in urine (ng/mL), 1.012 is the median SG of all analyzed samples, and SG is the specific 

gravity of each sample. Because mothers did not provide the same number of urine samples, 

we computed a weighted average of biomarker concentrations (Cavg) for phthalates, phenols, 

and parabens using the following formula (Barkoski et al., 2019; Shin et al., 2018): Cavg 

= (Cind + Cpooled × Npooled)/(1 + Npooled), where Cind is the biomarker concentration in an 

individual sample, Cpooled is the biomarker concentration in a pooled sample, and Npooled 

is the number of composites in a pooled sample. For di(2-ethylhexyl) phthalate (DEHP), we 

used the molar sum of four DEHP metabolites (∑DEHP = MEHP + MEHHP + MEOHP 

+ MECPP, nmol/mL) as a DEHP biomarker instead of individual DEHP metabolites in 

statistical analyses due to the high correlations among four DEHP metabolites (Spearman’s 

rho = 0.85 to 0.99; data not shown). The SG-corrected concentrations were used to calculate 

the Cavg. For blood PFAS with long elimination half-lives in a body, we used the arithmetic 

average of available PFAS concentrations for mothers who provided multiple samples.

2.5. Statistical analysis

We conducted univariate statistics and compared participant characteristics among children 

with TD, non-TD, and ASD using Pearson’s chi-squared test. The descriptive statistics 

of each biomarker concentrations are available in Table S3, and we compared biomarker 

levels among children with TD, non-TD, and ASD using the Mann-Whitney test (Table 

S4). For further statistical analyses, we only included 30 biomarkers detected in >50 % of 

the samples, including 3 parabens, 2 phenols, 11 phthalate biomarkers (with 14 measured 

metabolites, including the sum of 4 DEHP metabolites as the DEHP biomarker [∑DEHP]), 

7 OPE metabolites, and 7 PFAS. We used continuous ln-transformed concentrations due 

to their right-skewed distributions and created a correlation heatmap for the ln-transformed 

concentrations of these 30 biomarkers using Pearson’s correlations (Fig. S2, Table S5).

Before examining the mixture effects, we conducted a two-steps analysis due to the small 

sample size (110 mother-child pairs) and many predictors (30 biomarkers). First, we 

performed hierarchical clustering (h-clustering), an agglomerative clustering algorithm, to 

reduce the dimensionality of the biomarker and identify clusters with similar chemical 

profiles. We selected the optimal number of clusters (k) based on ≥ 80 % stability 

(i.e., the consistency of the cluster structure when the algorithm is applied to slightly 

perturbed versions of the data) and a high average silhouette coefficient (i.e., a measure 

of how well each data point fits within its assigned cluster compared to other clusters) 

(Batool and Hennig, 2021; Chavent et al., 2011). The clustering results were displayed 
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using a dendrogram. Second, we conducted a linear discriminant analysis (LDA) to obtain 

LDA components for each cluster identified from h-clustering. The LDA is a method 

for feature extraction or dimension reduction for classification (Abdulhafedh, 2022) by 

finding a linear combination of biomarkers that provides maximal separation between 

groups (Balakrishnama and Ganapathiraju, 1998). From the LDA analysis, we defined LDA 

components as LDA scores (LDAS) which summarize the exposure level (i.e., biomarker 

concentrations) of each cluster:

LDASclusteri = ∑
j = 1

K − 1
DjXci, i = 1, 2, …, k

where LDAS is the exposure summary score vector obtained via the LDA, K is the number 

of outcome groups in each combination (K = 2 in our case as shown below), k is the optimal 

number of clusters obtained from h-clustering, D is the linear determinant coefficient vector 

of the jth component, X is a n × ci exposure matrix, ci is the number of chemicals in the 

cluster i, and n is sample size. We conducted two separate LDA analyses with the following 

combinations of child neurodevelopmental outcome groups: i) children with TD or ASD 

and ii) children with TD or non-TD. We compared the distributions of LDA scores between 

the two outcome groups using a t-test to assess whether the estimated scores distinguished 

between each combination. For each combination, we also calculated coefficients of linear 

discriminants to determine the contribution (i.e., weight) of each chemical within each 

cluster, indicating how much each chemical influences the separation of the outcome group 

in its respective cluster.

Then, we performed quasi-Poisson regression using LDAS as an exposure variable to 

examine multipollutant associations with ASD or non-TD compared to TD, estimating 

relative risk (RR) while adjusting for selected covariates and LDAS of all clusters:

y = β0 + β1LDAScluster1 + … + βkLDASclusterk + Z

where LDAS is the LDA score, k is the number of clusters (k = 4 which is determined 

from h-clustering), and Z is the covariance matrix. We constructed a directed acyclic graph 

(DAG) to identify potential confounders (Fig. S3), which included a priori selected variables 

based on previous MARBLES studies (Barkoski et al., 2019, 2021; Dou et al., 2024; Oh et 

al., 2021; Philippat et al., 2018; Shin et al., 2018). The selected covariates include child’s 

sex (male, female), year of birth (2009–2010, 2011–2014), maternal age at delivery (<35, 

≥35 years), maternal race/ethnicity (non-Hispanic White; other, which included Hispanic, 

Asian, Black, and multiracial persons), parity (1, ≥1, missing), maternal pre-pregnancy body 

mass index (BMI) (<25.0, ≥25.0 kg/m2), maternal education (less than bachelor’s degree, 

bachelor’s degree or more), and homeownership (no, yes, missing).

To investigate possible interactions between and within clusters, we used bivariate exposure-

response distributions of Bayesian Kernel Machine Regression (BKMR) with a multiple 

parallel chains model. The distributions show the effect of one exposure conditional on 

different percentiles (25th, 50th, 75th, and 90th percentiles) of another exposure, while the 
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rest of the exposures were fixed at the 50th percentile (Bobb et al., 2015). The Bayesian 

approach in BKMR is more flexible with small sample sizes compared to frequentist 

methods, and we applied multiple chains to obtain stable estimation. The BKMR model 

with probit link function was fitted using Markov Chain Monte Carlo (MCMC) with five 

chains of 10,000 iterations after a burn-in sample of 1000 iterations, and default parameter 

settings were used for modeling.

Using BKMR, we examined univariate exposure-response curves between biomarker 

concentrations and LDAS as well as between biomarker concentrations and risk of ASD 

or non-TD. Furthermore, the overall effects of the clusters were examined by analyzing the 

changes in RR when LDAS of all clusters were set at different percentiles (10th to 80th 

percentiles, with 10th percentile increase) compared to when those of all clusters were set at 

the 50th percentile (Bobb et al., 2015).

For the mixture analyses, we converted the ln-transformed biomarker concentrations to 

z-scores to account for differences in the scales of biomarker concentrations; these z-scores 

were also used in the h-clustering and LDA. Statistical analyses were performed in R 

version 4.3.1 (R Core Team, https://www.R-project.org/). For the BKMR analysis, we used a 

“bkmrhat” package. The significance level was set at α = 0.05 for most analyses, except for 

Pearson’s chi-squared test (α = 0.10) to account for our limited sample size and minimize 

the risk of missing meaningful associations.

3. Results

3.1. Participant characteristics

Among the 110 mother-child pairs included in this study, 65 (59 %), 25 (23 %), and 20 (18 

%) children were classified as TD, ASD, and non-TD, respectively (Table 1). More male 

children than female children were included in the current study (63 %). More mothers of 

non-TD children tended to deliver a baby at 35 years old or younger (70 %), compared to 

those of ASD and TD children (55 % and 52 %, respectively). The participants retained in 

this study had similar characteristics to those not included from the full cohort (Table S6).

3.2. Maternal prenatal biomarker concentrations

Three out of 4 parabens, 7 out of 9 PFAS, 2 out of 5 phenols, all 7 OPE metabolites and 14 

phthalate metabolites were detected in more than 50 % of the samples (Table S3). Compared 

to mothers of TD children, mothers of ASD children had lower BCPP concentration, 

while mothers of non-TD children had higher phthalate biomarker concentrations (∑DEHP, 

MCPP, MNP, MCOP) (p-value <0.05) (Table S4). Pearson’s correlations coefficients of 

ln-transformed concentrations ranged from 0.13 to 0.76 among parabens and phenols, from 

−0.17 to 0.65 among PFAS, from 0.36 to 0.96 among phthalates, from 0.17 to 0.61 among 

OPEs (Fig. S2, Table S5). Overall, biomarker concentrations within the same chemical 

class showed higher correlations each other compared to those across chemical classes. We 

also observed notable cross-chemical class correlations among phthalates, parabens, BPA, 

and OPEs. For example, most phthalate biomarkers had at least one moderate positive 

correlation with parabens (r = 0.30 to 0.52), phenols (r = 0.32 to 0.71), and OPE biomarkers 
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(r = 0.31 to 0.52). Also, MEPB showed moderate correlations with TCS (r = 0.33), BPA 

(r = 0.39) and OPE biomarkers (e. g., DIBP/DBUP, BDCPP, DPHP) (r = 0.30 to 0.41), 

while PRPB had moderate correlations with TCS (r = 0.36), BPA (r = 0.31) and DPHP (r = 

0.34). BPA had moderate correlations with some OPEs (i.e., DBUP/DIBP, BBOEP, BDCPP, 

DPHP) (r = 0.31 to 0.39).

3.3. Chemical clustering and exposure summarization

From h-clustering of the 30 biomarkers quantified in prenatal maternal samples of 110 

mother-child pairs, we identified four distinct clusters that are reasonably well-separated 

from each other (Fig. 2). This number met our selection criteria of ≥80 % stability and 

high average silhouette width. Clusters 1 through 4 include PFAS, OPEs, parabens/TCS, 

and phthalates/BPA, respectively. This indicates that h-clustering discriminates clusters with 

similar chemical functions or uses.

Using LDA, we estimated LDA scores for each cluster in two outcome group combinations: 

ASD vs. TD (Fig. 3A) and non-TD vs. TD (Fig. 3B). When comparing LDA score 

distributions between outcome groups, we found significant differences (p-value <0.05) in 

most cases, except for Cluster 3 of non-TD vs. TD. Overall, outcomes tended to be separated 

well across clusters, implying that each outcome has different exposure characteristics. 

For most clusters, mothers whose children had ASD or non-TD diagnosis tended to have 

higher LDA scores compared to mothers who had TD children, implying certain chemical 

combinations might be associated with ASD or non-TD.

3.4. Multipollutant associations of chemical mixtures with ASD/non-TD

For all clusters, higher LDA scores were associated with increased risk of ASD relative to 

TD (RR ranged from 1.12 to 1.17, p-value <0.05) (Fig. 4A, Table S7). Based on the absolute 

coefficients of linear discriminants, separation of TD from ASD was most influenced by 

PFNA, BCPP, MEPB, and MHiBP in each cluster (Fig. 4B, Table S8). This indicates that 

gestational exposures to these compounds contributed the most to the differences between 

TD and ASD. When examining the relationship between chemical concentrations and LDA 

scores, PFNA concentrations showed a positive relationship with LDA scores (Fig. S4, 

bottom panel), while BCPP, MEPB, and MHiBP concentrations showed opposite trends 

(Figure S5–S7, bottom panels). These trends were similar to the relationship between 

chemical concentrations and the RR of ASD (Figure S4–S7, top panels).

For non-TD, higher LDA scores were associated with increased risk of non-TD relative 

to TD for Cluster 2 (OPEs) (RR = 1.07, 95 % CI: 1.01, 1.14) and Cluster 4 (phthalates 

and BPA) (RR = 1.12, 95 % CI: 1.05, 1.19) (Fig. 4C, Table S7). In Cluster 2 and Cluster 

4, BCETP and MBP were the most influential components, respectively (Fig. 4D, Table 

S8), indicating that gestational exposures to BCETP and MBP contributed the most to 

the differences between TD and non-TD. BCETP had a negative relationship with LDA 

scores but showed a non-linear relationship with the RR of non-TD (Fig. S8). MBP had a 

non-linear relationship with LDA scores but showed a slightly decreasing trend with the RR 

of non-TD (Fig. S9).
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When using BKMR to investigate the overall effects of the cluster mixtures on ASD or 

non-TD, increased cumulative exposures to mixtures of the four clusters were associated 

with increase in the risk for ASD and non-TD (Fig. 5).

3.5. Interactions between and within clusters for ASD/non-TD

We investigated interactions between clusters using BKMR bivariate plots (Figure S10). 

We assumed there is a potential interaction between biomarkers if the shape of the curves 

between one biomarker and the outcome is different for the different quantiles of another 

biomarker (e. g., if the curves intersect with one another at any point). Overall, we observed 

potential interactions between clusters, with one showing a decreasing slope of the curves at 

higher conditional exposure percentiles. Cluster 1 (PFAS) showed interactions with Cluster 

4 (phthalates/BPA) for ASD (Fig. S10).

We also examined interactions between chemical biomarkers within each cluster that 

showed statistical significance with increased risk of ASD or non-TD, relative to TD 

(Figures S11–S16). In Cluster 1, we observed potential interactions between PFAS 

compounds, with noticeable interactions between PFHxS and Me-FOSAA for ASD. The 

relationship between PFHxS and ASD risk changed from inverse to positive when Me-

FOSAA was at the 90th percentile concentration (Fig. 6A, Figure S11). In Cluster 2, we 

observed potential interactions between OPE compounds, with BCETP showing noticeable 

interactions with other OPEs and a non-monotonic dose-response trend (Figure S12). 

In Cluster 3, we observed interactions between MEPB and ETPB, where the inverse 

relationship between MEPB and ASD risk become less steep as ETPB concentrations 

increased. Additionally, PRPB and TCS showed interactions, where the slope of the 

curve flattened as TCS concentrations increased (Figure S13). Cluster 4 showed potential 

interactions between phthalates, with particularly noticeable interactions between MCNP 

and MCOP (Fig. 6B). Additionally, MCNP showed potential interactions with MBP, MHBP, 

and MNP (Figure S14). For non-TD, BCETP and BCPP showed noticeable interactions with 

other OPEs in Cluster 2. BCETP also displayed non-monotonic dose-response trend, similar 

to that observed for ASD (Figure S15). In Cluster 4, we observed noticeable interactions 

between MCNP and MNP, where the slope of the curve flattened as MNP concentrations 

increased (Fig. 6C, Figure S16).

4. Discussion

In the present study, we examined the associations between gestational exposures to five 

chemical classes and risk of ASD/non-TD in children. We used concentrations of 29 

chemical biomarkers quantified in maternal samples collected during pregnancy. Based on 

the results of clustering, we chose four clusters corresponding to distinct chemical classes 

(PFAS [Cluster 1], OPEs [Cluster 2], parabens and TCS [Cluster 3], phthalates and BPA 

[Cluster 4]), indicating that chemicals with similar exposure characteristics (e.g., source, 

product use) are clustered together. When using the LDA scores of each cluster as exposure 

variables, we found that increased risks of both ASD and non-TD were associated with 

biomarkers represented in the chemical clusters of common plasticizers, including OPEs, 

phthalates, and BPA. Clusters of PFAS and parabens were additionally associated with ASD 
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risk. Furthermore, the cumulative exposure to chemicals in all clusters were associated with 

increased risks of ASD and non-TD. We observed the interactions of biomarkers between 

and within clusters, suggesting potential interactions among chemicals that have similar uses 

or exposure sources, such as food, indoor dust, or consumer products (Dodson et al., 2020; 

Li et al., 2019; Pacyga et al., 2019; Shin et al., 2020b; Tittlemier et al., 2007).

Some of our results were comparable to those of previous MARBLES studies that 

investigated the association of ASD with individual chemical compounds as well as with 

mixtures of certain chemical classes, including PFAS, parabens, and phenols (Barkoski et 

al., 2019; Oh et al., 2021; Shin et al., 2018). From this current study, we observed that ASD 

risk was associated with PFAS (Cluster 1) and PFNA had the largest discriminant ability to 

distinguish TD and ASD, consistent with our previous study finding that individual PFOA 

and PFNA were associated with increased risk of ASD, along with previous findings (Oh 

et al., 2021). From this current study, we observed increased risk of ASD with parabens 

and TCS (Cluster 3), with MEPB having the largest discriminant ability. Our previous 

MARBLES study used trinomial weighted quantile sum (WQS) regression to analyze a 

mixture of parabens and BPA (Barkoski et al., 2019) and reported that exposure to the 

mixture was associated with increased ASD risk, with borderline statistical significance. 

This previous study also reported statistically significant associations between the mixture 

and increased risk of non-TD, and MEPB was the most weighted compound. In the previous 

study, individual BPA was inversely associated with ASD risk, and the current study also 

showed that BPA had a similar inverse trend with ASD risk (Fig. S7). However, BPA 

contributed less than phthalates in the same cluster and did not show noticeable interaction 

with other phthalates. For phthalates, we observed increased risk both for ASD and non-TD 

in association with Cluster 4 from this current study, with MHiBP and MBP having the 

largest discriminant ability, respectively. Our previous MARBLES study with phthalates 

reported that individual phthalate biomarkers were not associated with ASD, but MEP was 

associated with increased risk for non-TD (Shin et al., 2018). MCPP and MCNP were also 

associated with increased risk for non-TD, with borderline significance. These results were 

comparable with our findings that MEP, MCPP, and MCNP have positive relationships with 

non-TD. However, we observed potential antagonistic effects between MCNP and MNP in 

the interaction analysis (Figure S16), suggesting a need to investigate interactions among 

compounds. A more comprehensive approach is necessary when examining exposure to 

chemical mixtures. We observed increased risk for ASD and non-TD with OPEs (Cluster 2) 

from the current study. In our previous study, we also observed increased risk for non-TD in 

relation to OPE mixture although this association did not reach statistical significance (Choi 

et al., 2024).

Three epidemiological studies have investigated the associations between mixtures of 

multiple chemical classes and ASD or ASD-related behaviors in children using different 

statistical approaches from the current study (Hamra et al., 2019; Tsai et al., 2023; van den 

Dries et al., 2021). Only one Taiwanese study reported similar findings with the current 

study that higher exposure to a mixture of phthalates and/or metals was associated with 

increased odds of ASD-related problems using quantile-based g-computation (Tsai et al., 

2023). In the phthalate and metal mixture, cobalt, MEOHP, and lead contributed the most 

to positive weights. The other two studies found no significant associations with ASD or 
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ASD-related behaviors (Hamra et al., 2019; van den Dries et al., 2021). A U.S. cohort 

study investigated the association with a mixture of PBDEs, PBBs, PCBs, OCPs, and PFAS 

in children diagnosed with ASD using a Bayesian method (Hamra et al., 2019). A study 

from the Netherlands examined the association between a mixture of phthalates, bisphenols, 

and OPPs and autistic behaviors using quantile-based g-computation (van den Dries et 

al., 2021). Note that there was not much overlap for the compounds considered between 

these studies and this current study. Additionally, differences in population characteristics, 

neurodevelopmental assessment tools, and statistical methods might have contributed to 

varying results.

We observed cumulative exposure to the four chemical clusters identified through h-

clustering, resulting in a greater overall effect of these clusters on the risk of ASD and non-

TD. Underlying mechanisms of gestational exposures to chemicals and their impact on child 

neurodevelopment are still unclear and complicated. However, one common mechanism 

suggested for endocrine-disrupting chemicals (EDCs), such as the compounds included in 

our study, relates to thyroid hormone disruption during pregnancy (Braun, 2017; Ghassabian 

and Trasande, 2018). Maternal thyroid hormones play an important role in the normal brain 

development of offspring (Préau et al., 2015) and some birth cohort studies have reported 

that maternal thyroid hormone deficiency during pregnancy is associated with increased risk 

of ASD or autistic traits of children (Andersen et al., 2014; Getahun et al., 2018; Levie et 

al., 2018; Roman et al., 2013). Therefore, thyroid hormone disruption by EDCs may affect 

the neurodevelopment of children before or after birth. Several epidemiological studies 

have reported that prenatal exposures to these chemicals as either individual chemicals or 

a mixture were associated with maternal thyroid dysfunction during pregnancy (Berger et 

al., 2018; Choi et al., 2021; Derakhshan et al., 2021; Kato et al., 2016; Lebeaux et al., 

2020; Preston et al., 2020; Romano et al., 2018). However, more studies are needed on 

prenatal exposures to mixtures of multiple chemical classes in relation to maternal thyroid 

dysfunction.

When investigating interactions within and between clusters, we observed complex 

chemical interactions among chemicals in relation to child neurodevelopmental outcomes, 

highlighting the need to account for exposures to multiple chemical classes in 

epidemiological studies. For example, BCPP, the most influential compound for ASD 

in Cluster 4, had an inverse relationship with ASD risk (Fig. S5). However, within the 

same cluster, BCPP showed both potential synergistic and antagonistic interactions, with 

dose-response patterns varying depending on co-exposures with other OPEs (Figure S12). 

Specifically, in the BCPP-BBOEP combinations, the slopes of BCPP became narrower as 

BBOEP percentiles increased, whereas in the BCPP-DPHP combination, the slopes of BCPP 

became steeper as DPHP percentiles increased, indicating a possible synergistic effect. 

These patterns suggest that BBOEP may attenuate and DPHP may amplify the effect of 

BCPP, which could be interpreted as potential antagonistic and synergistic interactions in 

a dose-dependent manner. Similarly, BCETP, the most influential chemical for non-TD, 

also showed both potential synergistic and antagonistic interactions with other OPEs 

mirroring the patterns observed for BCPP (Figure S15). However, given the complexity 

of mixture effects and the non-monotonic dose-response trends (i.e., curved shapes), these 

interpretations should be further validated in future studies. To our knowledge, limited 
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studies exist on the biological mechanisms underlying the interaction of chemicals within 

the same or across different classes. A few in vitro and in vivo studies on PFAS mixtures 

found antagonistic effects on neurotoxicity (Menger et al., 2020), synergistic effects on 

reproductive toxicity (Kjeldsen and Bonefeld-Jorgensen, 2013), and additive effects on 

developmental toxicity (Zhou et al., 2017). One study reported that the complex patterns of 

interactions within PFAS might depend on various factors such as dose levels, proportions of 

dose, or mixture components (Ojo et al., 2021). In human liver cells, most combinations of 

PFOS with other PFAS compounds such as PFOA, PFHxS, PFNA, PFDA, and PFHpA 

showed synergistic interactions; however, antagonistic effects were observed in some 

mixtures with PFOA (Ojo et al., 2020). Additionally, we observed non-monotonic dose-

response relationship for some chemicals combined with interactions with other chemicals. 

This relationship has frequently been reported for EDCs in toxicological studies (Lagarde 

et al., 2015), highlighting the need to account for non-linear effects and interactions 

in epidemiological studies. Assuming monotonic trends may lead to misinterpretation of 

associations between chemical exposures and health outcomes. However, our findings may 

indicate that the interaction was spurious given the number of interactions tested and our 

small sample size.

The present study has several strengths. First, we improved the investigation of chemical 

exposures in relation to ASD by using clinical diagnosis data. Second, to address the 

challenge of a small sample size, we applied a two-step approach using h-clustering and 

LDA, which reduced the dimensionality and provided stable estimates. This approach 

offers advantages over commonly used mixture analysis methods, such as penalized 

regression (e.g., lasso, elastic net), which often suffer from variance overestimation and 

overfitting in small sample scenarios (Riley et al., 2021). In addition, LDA might be more 

statistically efficient for a small sample size compared to quantile-based g-computation 

used in other mixture studies (Tsai et al., 2023; van den Dries et al., 2021). LDA models 

the covariance structure within each group to maximize the difference between groups, 

while quantile-based g-computation estimates effects across multiple quantiles (Keil et al., 

2020). Furthermore, using LDA scores as exposure measures rather than individual chemical 

biomarker concentrations may have minimized bias that may be caused by correlations 

between chemicals and reduce the risk of confounding effects from one chemical on the 

observed associations of another.

However, this study also has some limitations to be noted. First, our findings may not 

be generalizable to other populations because MARBLES is an enriched ASD likelihood 

cohort, with children who already have an older sibling diagnosed with ASD. Second, 

our sample size is small compared to other similar studies. Third, OPE biomarkers were 

measured in a single spot urine sample mostly collected in the 3rd trimester (92 %) 

unlike other urinary biomarkers. Considering short biological half-lives of OPEs, it may 

not represent average OPE exposure during pregnancy. A few prior studies observed 

intraclass correlation coefficients for some urinary OPE biomarkers in pregnant women, 

showing varied results depending on the study population and biomarkers, with weak to 

high reproducibility (0.16–0.95) (Hoffman et al., 2014; Romano et al., 2017). Fourth, this 

study did not consider postnatal exposure although chemicals measured in this study are 

also frequently observed in breastmilk, diet, and various environmental media, indicating 
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potential ongoing exposure during their first three years of life in addition to gestational 

exposures. Several studies have reported the associations between early postnatal exposure 

to chemicals and increased odds of ASD or other neurodevelopmental concerns (Harris 

et al., 2021; Lee et al., 2018a; Oh et al., 2022). The evaluation of longitudinal early life 

chemical exposure mixtures should be an area of future study. Lastly, this study did not 

consider other well-known neurotoxicants, such as heavy metals (e.g., methyl mercury, 

cadmium, and lead) and organophosphate pesticides.

5. Conclusion

In this current study leveraging the existing data of the MARBLES cohort, we observed 

that gestational exposures to mixtures of multiple chemical classes were associated with 

increased risk of ASD or non-TD. This is an important finding because the associations 

were more evident compared to those reported in previous studies that examined individual 

chemical classes separately. We also observed the potential interactions among chemicals 

and overall effects of these chemicals on increased risk of ASD or non-TD. Our findings 

highlight the importance of considering multiple chemical classes with similar mechanisms 

of action (e.g., thyroid disruption) in epidemiological studies. Future studies are needed to 

investigate a broader range of chemical classes in a low-familial ASD risk cohort with a 

large sample.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement

Authors would like to acknowledge the MARBLES participants for making this research possible and 
the late Gertrud Schuster who managed the MARBLES biorepository. The authors would also like to 
acknowledge Dr. Antonia M. Calafat, Dr. Kurunthachalam Kannan, Dr. Dana Boyd Barr, Kayoko Kato, 
Grace Lee, Priya D’Souza, and other researchers for their contribution to laboratory analyses. Some 
part of laboratory and epidemiological data are hosted at the HHEAR Data Center Repository (https://
hheardatacenter.mssm.edu/) under the following DOIs: 10.36043/CHEAR-2016-1449-UEP_Trim1, 10.36043/
CHEAR-2016-1449-UEP_Trim2_3, 10.36043/CHEAR-2016-1449-Covars, 10.36043/CHEAR-2016-1449-Demo, 
10.36043/CHEAR-2016-1449-Outcome, and 10.36043/CHEAR-2016-1449-Spec.

Funding

This research was supported by grants from the National Institute of Environmental Health Sciences (R21-
ES025551, R01-ES020392, R/U24ES028533, R01ES028089, P01ES011269, R21-ES028131, R21-ES033389), was 
supported in part by the UC Davis MIND Institute Intellectual and Developmental Disabilities Research Center 
(U54 HD079125); additional support was provided by the U.S. EPA STAR (#R829388, R833292, and RD835432) 
and the Simons Foundation (SFARI #863967, RJS). This work was also supported by the National Institutes of 
Health (U2CE026542).

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential 
competing interests: Rebecca J. Schmidt reports a relationship with Beasley Allen Law Firm that includes: 
consulting or advisory and travel reimbursement. Rebecca J. Schmidt reports a relationship with Linus 
Biotechnology Inc that includes: consulting or advisory and travel reimbursement. Rebecca J. Schmidt reports 
a relationship with Simons Foundation that includes: funding grants. If there are other authors, they declare that 
they have no known competing financial interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Choi et al. Page 14

Environ Res. Author manuscript; available in PMC 2025 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://hheardatacenter.mssm.edu/
https://hheardatacenter.mssm.edu/
https://doi.org/10.36043/CHEAR-2016-1449-UEP_Trim1
https://doi.org/10.36043/CHEAR-2016-1449-UEP_Trim2_3
https://doi.org/10.36043/CHEAR-2016-1449-UEP_Trim2_3
https://doi.org/10.36043/CHEAR-2016-1449-Covars
https://doi.org/10.36043/CHEAR-2016-1449-Demo
https://doi.org/10.36043/CHEAR-2016-1449-Outcome
https://doi.org/10.36043/CHEAR-2016-1449-Spec


Data availability

Data will be made available on request.

References

Abdulhafedh A, 2022. Comparison between common statistical modeling techniques used in research, 
including: discriminant analysis vs logistic regression, ridge regression vs LASSO, and decision tree 
vs random forest. Open Access Library Journal 9, 1–19.

Adibi JJ, et al. , 2008. Characterization of phthalate exposure among pregnant women assessed by 
repeat air and urine samples. Environ. Health Perspect 116, 467–473. [PubMed: 18414628] 

Ames JL, et al. , 2023. Prenatal exposure to Per- and polyfluoroalkyl substances and childhood 
autism-related outcomes. Epidemiology 34, 450–459. [PubMed: 36630444] 

Andersen SL, et al. , 2014. Attention deficit hyperactivity disorder and autism spectrum disorder in 
children born to mothers with thyroid dysfunction: a Danish nationwide cohort study. BJOG 121, 
1365–1374. [PubMed: 24605987] 

Balakrishnama S, Ganapathiraju A, 1998. Linear discriminant analysis-a brief tutorial. Institute for 
Signal and information Processing 18, 1–8.

Barkoski JM, et al. , 2019. Prenatal phenol and paraben exposures in relation to child 
neurodevelopment including autism spectrum disorders in the MARBLES study. Environ. Res 179, 
108719. [PubMed: 31627027] 

Barkoski JM, et al. , 2021. In utero pyrethroid pesticide exposure in relation to autism spectrum 
disorder (ASD) and other neurodevelopmental outcomes at 3 years in the MARBLES longitudinal 
cohort. Environ. Res 194, 110495. [PubMed: 33220244] 

Batool F, Hennig C, 2021. Clustering with the average silhouette width. Comput. Stat. Data Anal 158, 
107190.

Berger K, et al. , 2018. Associations of maternal exposure to triclosan, parabens, and other phenols 
with prenatal maternal and neonatal thyroid hormone levels. Environ. Res 165, 379–386. [PubMed: 
29803919] 

Bobb JF, et al. , 2015. Bayesian kernel machine regression for estimating the health effects of multi-
pollutant mixtures. Biostatistics 16, 493–508. [PubMed: 25532525] 

Braun JM, 2017. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat. 
Rev. Endocrinol 13, 161–173. [PubMed: 27857130] 

Brennan Kearns P, et al. , 2024. Association of exposure to mixture of chemicals during pregnancy 
with cognitive abilities and fine motor function of children. Environ. Int 185, 108490. [PubMed: 
38364572] 

Chavent M, et al. , 2011. ClustOfVar: an R package for the clustering of variables. arXiv preprint 
arXiv:1112.0295.

Choi G, et al. , 2021. Pregnancy exposure to common-detect organophosphate esters and phthalates 
and maternal thyroid function. Sci. Total Environ 782, 146709. [PubMed: 33839654] 

Choi JW, et al. , 2024. Gestational exposure to organophosphate esters and autism spectrum disorder 
and other non-typical development in a cohort with elevated familial likelihood. Environ. Res 263, 
120141. [PubMed: 39395555] 

Derakhshan A, et al. , 2021. Association of phthalate exposure with thyroid function during pregnancy. 
Environ. Int 157, 106795. [PubMed: 34358912] 

Dodson RE, et al. , 2020. Consumer behavior and exposure to parabens, bisphenols, triclosan, 
dichlorophenols, and benzophenone-3: results from a crowdsourced biomonitoring study. Int. J. 
Hyg Environ. Health 230, 113624. [PubMed: 33011057] 

Dou JF, et al. , 2024. Exposure to heavy metals in utero and autism spectrum disorder at age 3: a 
meta-analysis of two longitudinal cohorts of siblings of children with autism. Environ. Health 23, 
62. [PubMed: 38970053] 

Getahun D, et al. , 2018. Association between maternal hypothyroidism and autism spectrum disorders 
in children. Pediatr. Res 83, 580–588. [PubMed: 29244797] 

Choi et al. Page 15

Environ Res. Author manuscript; available in PMC 2025 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ghassabian A, Trasande L, 2018. Disruption in thyroid signaling pathway: a mechanism for the effect 
of endocrine-disrupting chemicals on child neurodevelopment. Front. Endocrinol 9, 204.

Gotham K, et al. , 2009. Standardizing ADOS scores for a measure of severity in autism spectrum 
disorders. J. Autism Dev. Disord 39, 693–705. [PubMed: 19082876] 

Guo J, et al. , 2020. Prenatal exposure to mixture of heavy metals, pesticides and phenols and IQ in 
children at 7 years of age: the SMBCS study. Environ. Int 139, 105692. [PubMed: 32251899] 

Haggerty DK, et al. , 2021. Prenatal phthalate exposures and autism spectrum disorder symptoms in 
low-risk children. Neurotoxicol. Teratol 83, 106947. [PubMed: 33412243] 

Hamra GB, et al. , 2019. Prenatal exposure to endocrine-disrupting chemicals in relation to autism 
spectrum disorder and intellectual disability. Epidemiology 30, 418–426. [PubMed: 30789431] 

Harris MH, et al. , 2021. Prenatal and childhood exposure to per- and polyfluoroalkyl substances 
(PFAS) and child executive function and behavioral problems. Environ. Res 202, 111621. 
[PubMed: 34237332] 

Hertz-Picciotto I, et al. , 2018. A prospective study of environmental exposures and early biomarkers 
in autism spectrum disorder: design, protocols, and preliminary data from the MARBLES study. 
Environ. Health Perspect 126, 117004. [PubMed: 30465702] 

Hoffman K, et al. , 2014. Urinary metabolites of organophosphate flame retardants and their variability 
in pregnant women. Environ. Int 63, 169–172. [PubMed: 24316320] 

Hornung RW, Reed LD, 1990. Estimation of average concentration in the presence of nondetectable 
values. Appl. Occup. Environ. Hyg 5, 46–51.

Jedynak P, et al. , 2021. Prenatal exposure to a wide range of environmental chemicals and child 
behaviour between 3 and 7 years of age - an exposome-based approach in 5 European cohorts. Sci. 
Total Environ 763, 144115. [PubMed: 33422710] 

Kalloo G, et al. , 2021. Chemical mixture exposures during pregnancy and cognitive abilities in 
school-aged children. Environ. Res 197, 111027. [PubMed: 33744271] 

Kato S, et al. , 2016. Association of perfluorinated chemical exposure in utero with maternal and 
infant thyroid hormone levels in the sapporo cohort of Hokkaido study on the environment and 
Children’s health. Environ. Health Prev. Med 21, 334–344. [PubMed: 27137816] 

Keil AP, et al. , 2020. A quantile-based g-computation approach to addressing the effects of exposure 
mixtures. Environ. Health Perspect 128, 047004. [PubMed: 32255670] 

Kim JI, et al. , 2021. Association of phthalate exposure with autistic traits in children. Environ. Int 157, 
106775. [PubMed: 34314979] 

Kjeldsen LS, Bonefeld-Jorgensen EC, 2013. Perfluorinated compounds affect the function of sex 
hormone receptors. Environ. Sci. Pollut. Res. Int 20, 8031–8044. [PubMed: 23764977] 

Lagarde F, et al. , 2015. Non-monotonic dose-response relationships and endocrine disruptors: a 
qualitative method of assessment. Environ. Health 14, 13. [PubMed: 25971433] 

Lebeaux RM, et al. , 2020. Maternal serum perfluoroalkyl substance mixtures and thyroid hormone 
concentrations in maternal and cord sera: the HOME study. Environ. Res 185, 109395. [PubMed: 
32222633] 

Lee DW, et al. , 2018a. Prenatal and postnatal exposure to di-(2-ethylhexyl) phthalate and 
neurodevelopmental outcomes: a systematic review and meta-analysis. Environ. Res 167, 558–
566. [PubMed: 30145432] 

Lee J, et al. , 2018b. Bisphenol A distribution in serum, urine, placenta, breast milk, and umbilical 
cord serum in a birth panel of mother-neonate pairs. Sci. Total Environ 626, 1494–1501. [PubMed: 
29146078] 

Levie D, et al. , 2018. Thyroid function in early pregnancy, child IQ, and autistic traits: a meta-analysis 
of individual participant data. J. Clin. Endocrinol. Metab 103, 2967–2979. [PubMed: 29757392] 

Li J, et al. , 2019. A review on organophosphate ester (OPE) flame retardants and plasticizers in 
foodstuffs: levels, distribution, human dietary exposure, and future directions. Environ. Int 127, 
35–51. [PubMed: 30901640] 

Li Y, et al. , 2023. Organophosphate flame retardants in pregnant women: sources, occurrence, and 
potential risks to pregnancy outcomes. Environ. Sci. Technol 57, 7109–7128. [PubMed: 37079500] 

Choi et al. Page 16

Environ Res. Author manuscript; available in PMC 2025 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lord C, et al. , 2000. The autism diagnostic observation schedule-generic: a standard measure of social 
and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord 30, 
205–223. [PubMed: 11055457] 

Lyall K, et al. , 2017. The changing epidemiology of autism spectrum disorders. Annu. Rev. Publ. 
Health 38, 81–102.

Maenner MJ, et al. , 2023. Prevalence and characteristics of autism spectrum disorder among children 
aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 
2020. Mmwr-Morbidity and Mortality Weekly Report 72.

Menger F, et al. , 2020. Behavioural effects and bioconcentration of per- and polyfluoroalkyl 
substances (PFASs) in zebrafish (Danio rerio) embryos. Chemosphere 245, 125573. [PubMed: 
31877453] 

Monroy R, et al. , 2008. Serum levels of perfluoroalkyl compounds in human maternal and umbilical 
cord blood samples. Environ. Res 108, 56–62. [PubMed: 18649879] 

Mullen EM, 1995. Mullen Scales of Early Learning Manual. American Guidance Service, Circle 
Pines, MN.

Oh J, et al. , 2021. Prenatal exposure to per- and polyfluoroalkyl substances in association with autism 
spectrum disorder in the MARBLES study. Environ. Int 147, 106328. [PubMed: 33387879] 

Oh J, et al. , 2022. Childhood exposure to per- and polyfluoroalkyl substances and neurodevelopment 
in the CHARGE case-control study. Environ. Res 215, 114322. [PubMed: 36108719] 

Ojo AF, et al. , 2020. Combined effects and toxicological interactions of perfluoroalkyl and 
polyfluoroalkyl substances mixtures in human liver cells (HepG2). Environ. Pollut 263, 114182. 
[PubMed: 32247900] 

Ojo AF, et al. , 2021. Assessing the human health risks of per- and polyfluoroalkyl substances: a 
need for greater focus on their interactions as mixtures. J. Hazard Mater 407, 124863. [PubMed: 
33373965] 

Oskar S, et al. , 2024. Identifying critical windows of prenatal phenol, paraben, and pesticide exposure 
and child neurodevelopment: findings from a prospective cohort study. Sci. Total Environ 920, 
170754. [PubMed: 38369152] 

Ozonoff S, et al. , 2005. Evidence-based assessment of autism spectrum disorders in children and 
adolescents. J. Clin. Child Adolesc. Psychol 34, 523–540. [PubMed: 16083393] 

Ozonoff S, et al. , 2014. The broader autism phenotype in infancy: when does it emerge? J. Am. Acad. 
Child Adolesc. Psychiatry 53, 398, 407 e2. [PubMed: 24655649] 

Ozonoff S, et al. , 2024. Familial recurrence of autism: updates from the baby siblings research 
consortium. Pediatrics 154.

Ozonoff S, et al. , 2011. Recurrence risk for autism spectrum disorders: a baby siblings research 
consortium study. Pediatrics 128, e488–e495. [PubMed: 21844053] 

Pacyga DC, et al. , 2019. Dietary predictors of phthalate and bisphenol exposures in pregnant women. 
Adv. Nutr 10, 803–815. [PubMed: 31144713] 

Philippat C, et al. , 2018. Prenatal exposure to organophosphate pesticides and risk of autism spectrum 
disorders and other non-typical development at 3 years in a high-risk cohort. Int. J. Hyg Environ. 
Health 221, 548–555. [PubMed: 29478806] 

Préau L, et al. , 2015. Thyroid hormone signaling during early neurogenesis and its significance as 
a vulnerable window for endocrine disruption. Biochimica et Biophysica Acta (BBA) - Gene 
Regulatory Mechanisms 1849, 112–121. [PubMed: 24980696] 

Preston EV, et al. , 2020. Prenatal exposure to per- and polyfluoroalkyl substances and maternal 
and neonatal thyroid function in the project viva cohort: a mixtures approach. Environ. Int 139, 
105728. [PubMed: 32311629] 

Riley RD, et al. , 2021. Penalization and shrinkage methods produced unreliable clinical prediction 
models especially when sample size was small. J. Clin. Epidemiol 132, 88–96. [PubMed: 
33307188] 

Roman GC, et al. , 2013. Association of gestational maternal hypothyroxinemia and increased autism 
risk. Ann. Neurol 74, 733–742. [PubMed: 23943579] 

Choi et al. Page 17

Environ Res. Author manuscript; available in PMC 2025 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Romano ME, et al. , 2018. Maternal urinary phthalate metabolites during pregnancy and thyroid 
hormone concentrations in maternal and cord sera: the HOME study. Int. J. Hyg Environ. Health 
221, 623–631. [PubMed: 29606598] 

Romano ME, et al. , 2017. Variability and predictors of urinary concentrations of organophosphate 
flame retardant metabolites among pregnant women in Rhode Island. Environ. Health 16, 40. 
[PubMed: 28399857] 

Shin HM, et al. , 2019. Variability of urinary concentrations of phthalate metabolites during pregnancy 
in first morning voids and pooled samples. Environ. Int 122, 222–230. [PubMed: 30477814] 

Shin HM, et al. , 2020a. Modeled prenatal exposure to per- and polyfluoroalkyl substances in 
association with child autism spectrum disorder: a case-control study. Environ. Res 186, 109514. 
[PubMed: 32353786] 

Shin HM, et al. , 2020b. Measured concentrations of consumer product chemicals in California house 
dust: implications for sources, exposure, and toxicity potential. Indoor Air 30, 60–75. [PubMed: 
31587372] 

Shin HM, et al. , 2018. Prenatal exposure to phthalates and autism spectrum disorder in the 
MARBLES study. Environ. Health 17, 85. [PubMed: 30518373] 

Song SM, et al. , 2020. Profiles of parabens and their metabolites in paired maternal-fetal serum, urine 
and amniotic fluid and their implications for placental transfer. Ecotoxicol. Environ. Saf 191.

Tanner EM, et al. , 2020. Early prenatal exposure to suspected endocrine disruptor mixtures is 
associated with lower IQ at age seven. Environ. Int 134, 105185. [PubMed: 31668669] 

Tittlemier SA, et al. , 2007. Dietary exposure of Canadians to perfluorinated carboxylates and 
perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in 
their packaging. J. Agric. Food Chem 55, 3203–3210. [PubMed: 17381114] 

Tsai TL, et al. , 2023. Co-exposure to toxic metals and phthalates in pregnant women and their 
children’s mental health problems aged four years - Taiwan maternal and infant cohort study 
(TMICS). Environ. Int 173, 107804. [PubMed: 36842379] 

van den Dries MA, et al. , 2021. Prenatal exposure to nonpersistent chemical mixtures and offspring 
IQ and emotional and behavioral problems. Environ. Sci. Technol 55, 16502–16514. [PubMed: 
34878787] 

Vuong AM, et al. , 2020. Prenatal exposure to a mixture of persistent organic pollutants (POPs) and 
child reading skills at school age. Int. J. Hyg Environ. Health 228, 113527. [PubMed: 32521479] 

Yonkman AM, et al. , 2023. Using latent profile analysis to identify associations between gestational 
chemical mixtures and child neurodevelopment. Epidemiology 34, 45–55. [PubMed: 36166205] 

Zheng P, et al. , 2022. Prenatal and postnatal exposure to emerging and legacy per-/polyfluoroalkyl 
substances: levels and transfer in maternal serum, cord serum, and breast milk. Sci. Total Environ 
812, 152446. [PubMed: 34952085] 

Zhou R, et al. , 2017. Interactions between three typical endocrine-disrupting chemicals (EDCs) 
in binary mixtures exposure on myocardial differentiation of mouse embryonic stem cell. 
Chemosphere 178, 378–383. [PubMed: 28340460] 

Choi et al. Page 18

Environ Res. Author manuscript; available in PMC 2025 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Flow chart for the study sample selection from the full cohort. Note: Not all mothers had 

measurements of blood and urine samples for every trimester and some mothers only had 

measurements of either urine or blood during the entire pregnancy. This study included 

mothers who provided at least one sample during the entire pregnancy.
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Fig. 2. 
Four clusters of the 30 biomarkers identified from hierarchical clustering. This method 

works from bottom-up, starting with individual chemicals and iteratively merging the two 

most similar ones until a single large cluster remains. Similarity was measured using 

Euclidean distance (y-axis).
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Fig. 3. 
Comparison of the linear discriminant analysis (LDA) scores between (A) TD (n = 65) 

and ASD (n = 25) groups and (B) TD and non-TD (n = 20) groups, respectively. Three 

horizontal lines in box plots represent 25th, 50th, and 75th percentiles, respectively.
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Fig. 4. 
(A) Adjusted relative risk (RR; dots) and 95 % CI (error bars) of ASD (n = 25) vs. TD 

(n = 65) in relation to LDA scores and (B) the coefficients of linear discriminants of each 

chemical biomarker in each cluster, estimated in the linear discriminant analysis (LDA). (C) 

Adjusted RR (symbols) and 95 % CI (error bars) of non-TD (n = 20) vs. TD (n = 65) in 

relation to LDA scores and (D) the coefficients of linear discriminants of each chemical 

biomarker in each cluster, estimated in the LDA. Note: Each model was adjusted for child 

sex, year of birth, maternal age, maternal race/ethnicity, parity, maternal pre-pregnancy 

BMI, maternal education, and homeownership. Coefficients of linear discriminants are also 

provided in Supporting Information: Table S8.
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Fig. 5. 
Overall effect of the cluster mixture (estimates and 95 % confidence intervals) on (A) 

ASD or (B) non-TD estimated by Bayesian kernel machine regression, illustrating estimated 

changes in relative risk when all exposures are at a certain percentile (ranging from 10th to 

80th percentiles) compared to when all exposures are at the 50th percentile.
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Fig. 6. 
Interaction effects of (A) PFHxS and Me-FOSAA, (B) MCNP and MCOP for ASD 

vs. TD model, and (C) MCNP and MNP for non-TD vs. TD model. Bivariate exposure-

response function using Bayesian kernel regression, illustrating the effects of one chemical 

conditional on varying quantiles (25th, 50th, 75th, or 90th percentiles) of the other chemical, 

while keeping the rest of the mixtures fixed at their 50th percentile. Concentrations are 

ln-transformed and converted to z-scores.
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Table 1
Characteristics of the study participants (n [%]).

Characteristics All (n = 110) TD (n = 65) ASD (n = 25) Non-TD (n = 20) P-valuea

Child’s sex 0.239

 Male 69 (63) 37 (57) 19 (76) 13 (65)

 Female 41 (37) 28 (43) 6 (24) 7 (35)

Year of birth 0.576

 2009–2010 54 (49) 34 (52) 10 (40) 10 (50)

 2011–2014 56 (51) 31 (48) 15 (60) 10 (50)

Maternal age at delivery (years) 0.136

 < 35 55 (50) 29 (45) 12 (48) 14 (70)

 ≥ 35 55 (50) 36 (55) 13 (52) 6 (30)

Maternal pre-pregnancy BMI (kg/m2) 0.446

 < 25.0 52 (47) 34 (52) 10 (40) 8 (40)

 ≥ 25.0 58 (53) 31 (48) 15 (60) 12 (60)

Maternal education 0.449

 Less than bachelor’s degree 59 (54) 32 (49) 14 (56) 13 (65)

 Bachelor’s degree or more 51 (46) 33 (51) 11 (44) 7 (35)

Maternal race/ethnicity 0.377

 Non-Hispanic White 62 (56) 40 (62) 13 (52) 9 (45)

 All other races and ethnicitiesb 48 (44) 25 (38) 12 (48) 11 (55)

Parity 0.409

 1 45 (41) 28 (43) 8 (32) 9 (45)

 > 1 63 (57) 37 (57) 16 (64) 10 (50)

 Missing 2 (2) 0 (0) 1 (4) 1 (5)

Homeownership 0.263

 No 42 (38) 22 (34) 10 (40) 10 (50)

 Yes 66 (60) 43 (66) 14 (56) 9 (45)

 Missing 2 (3) 0 (0) 1 (4) 1 (5)

Abbreviation: autism spectrum disorder (ASD), body mass index (BMI), non-typical development (non-TD), typical development (TD).

a
P-value from the Pearson’s chi-squared test.

b
Includes Hispanic persons, Black persons, Asian persons, and person with other races.
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